15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinct Effects of Unfractionated Heparin versus Bivalirudin on Circulating Angiogenic Peptides

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Human studies of therapeutic angiogenesis, stem-cell, and progenitor-cell therapy have failed to demonstrate consistent clinical benefit. Recent studies have shown that heparin increases circulating levels of anti-angiogenic peptides. Given the widely prevalent use of heparin in percutaneous and surgical procedures including those performed as part of studies examining the benefit of therapeutic angiogenesis and cell-based therapy, we compared the effects of unfractionated heparin (UFH) on angiogenic peptides with those of bivalirudin, a relatively newer anticoagulant whose effects on angiogenic peptides have not been studied.

          Methodology/Principal Findings

          We measured soluble fms-like tyrosine kinase-1 (sFLT1), placental growth factor (PlGF), vascular endothelial growth factor (VEGF), and soluble Endoglin (sEng) serum levels by enzyme linked immunosorbent assays (ELISA) in 16 patients undergoing elective percutaneous coronary intervention. Compared to baseline values, sFLT1 and PlGF levels increased by 2629±313% and 253±54%, respectively, within 30 minutes of UFH therapy (p<0.01 for both; n = 8). VEGF levels decreased by 93.2±5% in patients treated with UFH (p<0.01 versus baseline). No change in sEng levels were observed after UFH therapy. No changes in sFLT1, PlGF, VEGF, or sEng levels were observed in any patients receiving bivalirudin (n = 8). To further explore the direct effect of anticoagulation on circulating angiogenic peptides, adult, male wild-type mice received venous injections of clinically dosed UFH or bivalirudin. Compared to saline controls, sFLT1 and PlGF levels increased by >500% (p<0.01, for both) and VEGF levels increased by 221±101% (p<0.05) 30 minutes after UFH treatment. Bivalirudin had no effect on peptide levels. To study the cellular origin of peptides after anticoagulant therapy, human coronary endothelial cells were treated with UFH and demonstrated increased sFLT1 and PlGF levels (ANOVA p<0.01 for both) with reduced VEGF levels (ANOVA p<0.05). Bivalirudin had no effect on peptide levels in vitro.

          Conclusions/Significance

          Circulating levels of sFLT1, PlGF, and VEGF are significantly altered by UFH, while bivalirudin therapy has no effect. These findings may have significant implications for clinical studies of therapeutic angiogenesis, stem-cell and progenitor-cell therapy.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Soluble endoglin and other circulating antiangiogenic factors in preeclampsia.

          Alterations in circulating soluble fms-like tyrosine kinase 1 (sFlt1), an antiangiogenic protein, and placental growth factor (PlGF), a proangiogenic protein, appear to be involved in the pathogenesis of preeclampsia. Since soluble endoglin, another antiangiogenic protein, acts together with sFlt1 to induce a severe preeclampsia-like syndrome in pregnant rats, we examined whether it is associated with preeclampsia in women. We performed a nested case-control study of healthy nulliparous women within the Calcium for Preeclampsia Prevention trial. The study included all 72 women who had preterm preeclampsia ( or =37 weeks), 120 women with gestational hypertension, 120 normotensive women who delivered infants who were small for gestational age, and 120 normotensive controls who delivered infants who were not small for gestational age. Circulating soluble endoglin levels increased markedly beginning 2 to 3 months before the onset of preeclampsia. After the onset of clinical disease, the mean serum level in women with preterm preeclampsia was 46.4 ng per milliliter, as compared with 9.8 ng per milliliter in controls (P<0.001). The mean serum level in women with preeclampsia at term was 31.0 ng per milliliter, as compared with 13.3 ng per milliliter in controls (P<0.001). Beginning at 17 weeks through 20 weeks of gestation, soluble endoglin levels were significantly higher in women in whom preterm preeclampsia later developed than in controls (10.2 ng per milliliter vs. 5.8 ng per milliliter, P<0.001), and at 25 through 28 weeks of gestation, the levels were significantly higher in women in whom term preeclampsia developed than in controls (8.5 ng per milliliter vs. 5.9 ng per milliliter, P<0.001). An increased level of soluble endoglin was usually accompanied by an increased ratio of sFlt1:PlGF. The risk of preeclampsia was greatest among women in the highest quartile of the control distributions for both biomarkers but not for either biomarker alone. Rising circulating levels of soluble endoglin and ratios of sFlt1:PlGF herald the onset of preeclampsia. Copyright 2006 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor.

            A human cDNA coding for a protein related to the vascular permeability factor (VPF) was isolated from a term placenta cDNA library; we therefore named its product placenta growth factor (PlGF). PlGF is a 149-amino-acid-long protein and is highly homologous (53% identity) to the platelet-derived growth factor-like region of human VPF. Computer analyses reveal a putative signal peptide and two probable N-glycosylation sites in the PlGF protein, one of which is also conserved in human VPF. By using N-glycosidase F, tunicamycin, and specific antibodies produced in both chicken and rabbit, we demonstrate that PlGF, derived from transfected COS-1 cells, is actually N-glycosylated and secreted into the medium. In addition, PlGF, like VPF, proves to be a dimeric protein. Finally, a conditioned medium from COS-1 cells containing PlGF is capable of stimulating specifically the growth of CPA, a line of endothelial cells, in vitro.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer

              Vascular endothelial growth factor (VEGF) is a major target for the inhibition of tumour vascularisation and the treatment of human cancer. Many tumours produce large quantities of VEGF, and as a result, diagnosis and prognosis of cancer may be predicted by measuring changes in VEGF concentrations in blood. In blood, the VEGF may be located in the plasma, or in the blood-borne cells and formed elements, in particular, platelets and leukocytes. In this study, we collate the measurements of VEGF in platelets, leukocytes, plasma and serum for breast, prostate, colorectal and other cancers. In addition, we analysed the concentration of VEGF in tumour tissue itself, as well as for other tissues in the human body. Although the concentration of VEGF in tumours is high, the size of tumours is small compared to other tissues, in particular, skeletal muscle. Thus, the total quantity of VEGF in tumours and in blood is small compared to the quantity in muscles. This large reservoir of VEGF may have important implications for the treatment of cancer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                11 April 2012
                : 7
                : 4
                : e34344
                Affiliations
                [1 ]Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
                [2 ]Division of Cardiology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
                University of Frankfurt - University Hospital Frankfurt, Germany
                Author notes

                Conceived and designed the experiments: NKK RHK IJ. Performed the experiments: AAY NNM SW VP AS MLE EEM XQ. Analyzed the data: NKK RHK IJ. Contributed reagents/materials/analysis tools: NKK AAY NNM SW VP AS MLE EEM XQ. Wrote the paper: NKK CS RHK IJ.

                Article
                PONE-D-11-23026
                10.1371/journal.pone.0034344
                3324508
                22509290
                33f0e775-cb2e-445e-9007-14f63550d473
                Kapur et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 November 2011
                : 27 February 2012
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Developmental Biology
                Stem Cells
                Medicine
                Cardiovascular
                Cardiovascular Pharmacology
                Interventional Cardiology
                Drugs and Devices
                Adverse Reactions
                Cardiovascular Pharmacology
                Drug Information
                Oncology
                Cancer Treatment
                Antiangiogenesis Therapy

                Uncategorized
                Uncategorized

                Comments

                Comment on this article