2
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Abstract

          Owing to the over-increasing demands in resisting and managing the coronavirus disease 2019 (COVID-19) pandemic, development of rapid, highly sensitive, accurate, and versatile tools for monitoring total antibody concentrations at the population level has been evolved as an urgent challenge on measuring the fatality rate, tracking the changes in incidence and prevalence, comprehending medical sequelae after recovery, as well as characterizing seroprevalence and vaccine coverage. To this end, herein we prepared highly luminescent quantum dot nanobeads (QBs) by embedding numerous quantum dots into polymer matrix, and then applied it as a signal-amplification label in lateral flow immunoassay (LFIA). After covalently linkage with the expressed recombinant SARS-CoV-2 spike protein (RSSP), the synthesized QBs were used to determine the total antibody levels in sera by virtue of a double-antigen sandwich immunoassay. Under the developed condition, the QB-LFIA can allow the rapid detection of SARS-CoV-2 total antibodies within 15 min with about one order of magnitude improvement in analytical sensitivity compared to conventional gold nanoparticle-based LFIA. In addition, the developed QB-LFIA performed well in clinical study in dynamic monitoring of serum antibody levels in the whole course of SARS-CoV-2 infection. In conclusion, we successfully developed a promising fluorescent immunological sensing tool for characterizing the host immune response to SARS-CoV-2 infection and confirming the acquired immunity to COVID-19 by evaluating the SRAS-CoV-2 total antibody level in the crowd.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections

          The clinical features and immune responses of asymptomatic individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been well described. We studied 37 asymptomatic individuals in the Wanzhou District who were diagnosed with RT-PCR-confirmed SARS-CoV-2 infections but without any relevant clinical symptoms in the preceding 14 d and during hospitalization. Asymptomatic individuals were admitted to the government-designated Wanzhou People's Hospital for centralized isolation in accordance with policy1. The median duration of viral shedding in the asymptomatic group was 19 d (interquartile range (IQR), 15-26 d). The asymptomatic group had a significantly longer duration of viral shedding than the symptomatic group (log-rank P = 0.028). The virus-specific IgG levels in the asymptomatic group (median S/CO, 3.4; IQR, 1.6-10.7) were significantly lower (P = 0.005) relative to the symptomatic group (median S/CO, 20.5; IQR, 5.8-38.2) in the acute phase. Of asymptomatic individuals, 93.3% (28/30) and 81.1% (30/37) had reduction in IgG and neutralizing antibody levels, respectively, during the early convalescent phase, as compared to 96.8% (30/31) and 62.2% (23/37) of symptomatic patients. Forty percent of asymptomatic individuals became seronegative and 12.9% of the symptomatic group became negative for IgG in the early convalescent phase. In addition, asymptomatic individuals exhibited lower levels of 18 pro- and anti-inflammatory cytokines. These data suggest that asymptomatic individuals had a weaker immune response to SARS-CoV-2 infection. The reduction in IgG and neutralizing antibody levels in the early convalescent phase might have implications for immunity strategy and serological surveys.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Development and clinical application of a rapid IgM‐IgG combined antibody test for SARS‐CoV‐2 infection diagnosis

            Abstract The outbreak of the novel coronavirus disease (COVID‐19) quickly spread all over China and to more than 20 other countries. Although the virus (severe acute respiratory syndrome coronavirus [SARS‐Cov‐2]) nucleic acid real‐time polymerase chain reaction (PCR) test has become the standard method for diagnosis of SARS‐CoV‐2 infection, these real‐time PCR test kits have many limitations. In addition, high false‐negative rates were reported. There is an urgent need for an accurate and rapid test method to quickly identify a large number of infected patients and asymptomatic carriers to prevent virus transmission and assure timely treatment of patients. We have developed a rapid and simple point‐of‐care lateral flow immunoassay that can detect immunoglobulin M (IgM) and IgG antibodies simultaneously against SARS‐CoV‐2 virus in human blood within 15 minutes which can detect patients at different infection stages. With this test kit, we carried out clinical studies to validate its clinical efficacy uses. The clinical detection sensitivity and specificity of this test were measured using blood samples collected from 397 PCR confirmed COVID‐19 patients and 128 negative patients at eight different clinical sites. The overall testing sensitivity was 88.66% and specificity was 90.63%. In addition, we evaluated clinical diagnosis results obtained from different types of venous and fingerstick blood samples. The results indicated great detection consistency among samples from fingerstick blood, serum and plasma of venous blood. The IgM‐IgG combined assay has better utility and sensitivity compared with a single IgM or IgG test. It can be used for the rapid screening of SARS‐CoV‐2 carriers, symptomatic or asymptomatic, in hospitals, clinics, and test laboratories.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prolonged presence of SARS-CoV-2 viral RNA in faecal samples

              We present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time RT-PCR results of all respiratory and faecal samples from patients with coronavirus disease 2019 (COVID-19) at the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, throughout the course of their illness and obligated quarantine period. Real-time RT-PCR was used to detect COVID-19 following the recommended protocol (appendix p 1). Patients with suspected SARS-CoV-2 were confirmed after two sequential positive respiratory tract sample results. Respiratory and faecal samples were collected every 1–2 days (depending on the availability of faecal samples) until two sequential negative results were obtained. We reviewed patients' demographic information, underlying diseases, clinical indices, and treatments from their official medical records. The study was approved by the Medical Ethical Committee of The Fifth Affiliated Hospital of Sun Yat-sen University (approval number K162-1) and informed consent was obtained from participants. Notably, patients who met discharge criteria were allowed to stay in hospital for extended observation and health care. Between Jan 16 and March 15, 2020, we enrolled 98 patients. Both respiratory and faecal samples were collected from 74 (76%) patients. Faecal samples from 33 (45%) of 74 patients were negative for SARS CoV-2 RNA, while their respiratory swabs remained positive for a mean of 15·4 days (SD 6·7) from first symptom onset. Of the 41 (55%) of 74 patients with faecal samples that were positive for SARS-CoV-2 RNA, respiratory samples remained positive for SARS-CoV-2 RNA for a mean of 16·7 days (SD 6·7) and faecal samples remained positive for a mean of 27·9 days (10·7) after first symptom onset (ie, for a mean of 11·2 days [9·2] longer than for respiratory samples). The full disease course of the 41 patients with faecal samples that were positive for SARS-CoV-2 RNA is shown in the figure . Notably, patient 1 had positive faecal samples for 33 days continuously after the respiratory samples became negative, and patient 4 tested positive for SARS-CoV-2 RNA in their faecal sample for 47 days after first symptom onset (appendix pp 4–5). Figure Timeline of results from throat swabs and faecal samples through the course of disease for 41 patients with SARS-CoV-2 RNA positive faecal samples, January to March, 2020 A summary of clinical symptoms and medical treatments is shown in the appendix (pp 2–3, 6–8). The presence of gastrointestinal symptoms was not associated with faecal sample viral RNA positivity (p=0·45); disease severity was not associated with extended duration of faecal sample viral RNA positivity (p=0·60); however, antiviral treatment was positively associated with the presence of viral RNA in faecal samples (p=0·025; appendix pp 2–3). These associations should be interpreted with caution because of the possibility of confounding. Additionally, the Ct values of all three targeted genes (RdRp, N, E) in the first faecal sample that was positive for viral RNA were negatively associated with the duration of faecal viral RNA positivity (RdRp gene r= –0·34; N gene r= –0·02; and E gene r= –0·16), whereas the correlation of the Ct values with duration of faecal sample positivity was only significant for RdRp (p=0·033; N gene p=0·91; E gene p=0·33). Our data suggest the possibility of extended duration of viral shedding in faeces, for nearly 5 weeks after the patients' respiratory samples tested negative for SARS-CoV-2 RNA. Although knowledge about the viability of SARS-CoV-2 is limited, 1 the virus could remain viable in the environment for days, which could lead to faecal–oral transmission, as seen with severe acute respiratory virus CoV and Middle East respiratory syndrome CoV. 2 Therefore, routine stool sample testing with real-time RT-PCR is highly recommended after the clearance of viral RNA in a patient's respiratory samples. Strict precautions to prevent transmission should be taken for patients who are in hospital or self-quarantined if their faecal samples test positive. As with any new infectious disease, case definition evolves rapidly as knowledge of the disease accrues. Our data suggest that faecal sample positivity for SARS-CoV-2 RNA normally lags behind that of respiratory tract samples; therefore, we do not suggest the addition of testing of faecal samples to the existing diagnostic procedures for COVID-19. However, the decision on when to discontinue precautions to prevent transmission in patients who have recovered from COVID-19 is crucial for management of medical resources. We would suggest the addition of faecal testing for SARS-CoV-2. 3 Presently, the decision to discharge a patient is made if they show no relevant symptoms and at least two sequential negative results by real-time RT-PCR of sputum or respiratory tract samples collected more than 24 h apart. Here, we observed that for over half of patients, their faecal samples remained positive for SARS-CoV-2 RNA for a mean of 11·2 days after respiratory tract samples became negative for SARS-CoV-2 RNA, implying that the virus is actively replicating in the patient's gastrointestinal tract and that faecal–oral transmission could occur after viral clearance in the respiratory tract. Determining whether a virus is viable using nucleic acid detection is difficult; further research using fresh stool samples at later timepoints in patients with extended duration of faecal sample positivity is required to define transmission potential. Additionally, we found patients normally had no or very mild symptoms after respiratory tract sample results became negative (data not shown); however, asymptomatic transmission has been reported. 4 No cases of transmission via the faecal–oral route have yet been reported for SARS-CoV-2, which might suggest that infection via this route is unlikely in quarantine facilities, in hospital, or while under self-isolation. However, potential faecal–oral transmission might pose an increased risk in contained living premises such as hostels, dormitories, trains, buses, and cruise ships. Respiratory transmission is still the primary route for SARS-CoV-2 and evidence is not yet sufficient to develop practical measures for the group of patients with negative respiratory tract sample results but positive faecal samples. Further research into the viability and infectivity of SARS-CoV-2 in faeces is required.
                Bookmark

                Author and article information

                Journal
                Sens Actuators B Chem
                Sens Actuators B Chem
                Sensors and Actuators. B, Chemical
                Elsevier B.V.
                0925-4005
                0925-4005
                21 May 2021
                21 May 2021
                : 130139
                Affiliations
                [a ]State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
                [b ]School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
                [c ]Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
                [d ]Jiangxi Weibang Biological Technology Co. Ltd, Nanchang 330096, PR China
                [e ]Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
                [f ]College of Information and Electrical Engineering, China Agricultural University, Haidian, Beijing 100083, PR China
                Author notes
                [* ]Corresponding author at: School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
                [** ]Corresponding author at: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
                [1]

                These authors contributed equally to this work.

                Article
                S0925-4005(21)00708-5 130139
                10.1016/j.snb.2021.130139
                8137357
                34035562
                34226be5-a822-454d-8b2c-62e5d1a15be6
                © 2021 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 30 January 2021
                : 16 May 2021
                : 17 May 2021
                Categories
                Article

                quantum dot nanobeads,lateral flow immunoassay,fluorescent detection,sars-cov-2,total antibodies

                Comments

                Comment on this article