5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Smc5/6 Complex: New and Old Functions of the Enigmatic Long-Distance Relative

      1
      Annual Review of Genetics
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Smc5 and Smc6, together with the kleisin Nse4, form the heart of the enigmatic and poorly understood Smc5/6 complex, which is frequently viewed as a cousin of cohesin and condensin with functions in DNA repair. As novel functions for cohesin and condensin complexes in the organization of long-range chromatin architecture have recently emerged, new unsuspected roles for Smc5/6 have also surfaced. Here, I aim to provide a comprehensive overview of our current knowledge of the Smc5/6 complex, including its long-established function in genome stability, its multiple roles in DNA repair, and its recently discovered connection to the transcription inhibition of hepatitis B virus genomes. In addition, I summarize new research that is beginning to tease out the molecular details of Smc5/6 structure and function, knowledge that will illuminate the nuclear activities of Smc5/6 in the stability and dynamics of eukaryotic genomes.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: not found
          • Article: not found

          Chromatin structure: a repeating unit of histones and DNA.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cohesins: chromosomal proteins that prevent premature separation of sister chromatids.

            Cohesion between sister chromatids opposes the splitting force exerted by microtubules, and loss of this cohesion is responsible for the subsequent separation of sister chromatids during anaphase. We describe three chromosmal proteins that prevent premature separation of sister chromatids in yeast. Two, Smc1p and Smc3p, are members of the SMC family, which are putative ATPases with coiled-coil domains. A third protein, which we call Scc1p, binds to chromosomes during S phase, dissociates from them at the metaphase-to-anaphase transition, and is degraded by the anaphase promoting complex. Association of Scc1p with chromatin depends on Smc1p. Proteins homologous to Scc1p exist in a variety of eukaryotic organisms including humans. A common cohesion apparatus might be used by all eukaryotic cells during both mitosis and meiosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alternative lengthening of telomeres: models, mechanisms and implications.

              Unlimited cellular proliferation depends on counteracting the telomere attrition that accompanies DNA replication. In human cancers this usually occurs through upregulation of telomerase activity, but in 10-15% of cancers - including some with particularly poor outcome - it is achieved through a mechanism known as alternative lengthening of telomeres (ALT). ALT, which is dependent on homologous recombination, is therefore an important target for cancer therapy. Although dissection of the mechanism or mechanisms of ALT has been challenging, recent advances have led to the identification of several genes that are required for ALT and the elucidation of the biological significance of some phenotypic markers of ALT. This has enabled development of a rapid assay of ALT activity levels and the construction of molecular models of ALT.
                Bookmark

                Author and article information

                Journal
                Annual Review of Genetics
                Annu. Rev. Genet.
                Annual Reviews
                0066-4197
                1545-2948
                November 23 2018
                November 23 2018
                : 52
                : 1
                : 89-107
                Affiliations
                [1 ]Cell Cycle Group, MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, United Kingdom;
                Article
                10.1146/annurev-genet-120417-031353
                30476445
                3486f5da-72a3-4cf9-8a6d-c847b4e90f90
                © 2018
                History

                Comments

                Comment on this article