11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pattern recognition scavenger receptor CD204 attenuates Toll-like receptor 4-induced NF-kappaB activation by directly inhibiting ubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6.

      The Journal of Biological Chemistry
      Animals, HEK293 Cells, Humans, Lipopolysaccharides, toxicity, Mice, Mice, Knockout, NF-kappa B, genetics, immunology, metabolism, Protein Multimerization, drug effects, Scavenger Receptors, Class A, Shock, Septic, chemically induced, Signal Transduction, TNF Receptor-Associated Factor 6, Toll-Like Receptor 4, Ubiquitination

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The collaboration and cross-talk between different classes of innate pattern recognition receptors are crucial for a well coordinated inflammatory response and host defense. Here we report a previously unrecognized role of scavenger receptor A (SRA; also known as CD204) as a signaling regulator in the context of Toll-like receptor 4 (TLR4) activation. We show that SRA/CD204 deficiency leads to greater sensitivity to LPS-induced endotoxic shock. SRA/CD204 down-regulates inflammatory gene expression in dendritic cells by suppressing TLR4-induced activation of the transcription factor NF-κB. For the first time, we demonstrate that SRA/CD204 executes its regulatory functions by directly interacting with the TRAF-C domain of TNF receptor-associated factor 6 (TRAF6), resulting in inhibition of TRAF6 dimerization and ubiquitination. The attenuation of NF-κB activity by SRA/CD204 is independent of its ligand-binding domain, indicating that the signaling-regulatory feature of SRA/CD204 can be uncoupled from its conventional endocytic functions. Collectively, we have identified the molecular linkage between SRA/CD204 and the TLR4 signaling pathways, and our results reveal a novel mechanism by which a non-TLR pattern recognition receptor restricts TLR4 activation and consequent inflammatory response.

          Related collections

          Author and article information

          Comments

          Comment on this article