8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endemism is one of the most important concepts in biogeography and is of high relevance for conservation biology. Nevertheless, our understanding of patterns of endemism is still limited in many regions of high biodiversity. This is also the case for Iran, which is rich in biodiversity and endemism, but there is no up-to-date account of diversity and distribution of its endemic species. In this study, a comprehensive list of all endemic vascular plant species of Iran, their taxonomic composition and their geographical distribution are presented. To this end, a total of 2,597 (sub)endemic vascular plant species of Iran were documented and their distribution in three phytogeographical regions, two biodiversity hotspots and five areas of endemism were analysed. The Irano-Turanian phytogeographical region harbours 88% of the Iranian endemics, the majority of which are restricted to the Irano-Anatolian biodiversity hotspot (84%). Nearly three quarters of the endemic species are restricted to mountain ranges. The rate of endemism increases along an elevational gradient, causing the alpine zone to harbour a disproportionally high number of endemics. With increasing pastoralism, urbanization, road construction and ongoing climate change, the risk of biodiversity loss in the Iranian mountains is very high, and these habitats need to be more effectively protected.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Recent plant diversity changes on Europe's mountain summits.

          In mountainous regions, climate warming is expected to shift species' ranges to higher altitudes. Evidence for such shifts is still mostly from revisitations of historical sites. We present recent (2001 to 2008) changes in vascular plant species richness observed in a standardized monitoring network across Europe's major mountain ranges. Species have moved upslope on average. However, these shifts had opposite effects on the summit floras' species richness in boreal-temperate mountain regions (+3.9 species on average) and Mediterranean mountain regions (-1.4 species), probably because recent climatic trends have decreased the availability of water in the European south. Because Mediterranean mountains are particularly rich in endemic species, a continuation of these trends might shrink the European mountain flora, despite an average increase in summit species richness across the region.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Towards a paleogeography and tectonic evolution of Iran

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Patterns and causes of species richness: a general simulation model for macroecology.

              Understanding the causes of spatial variation in species richness is a major research focus of biogeography and macroecology. Gridded environmental data and species richness maps have been used in increasingly sophisticated curve-fitting analyses, but these methods have not brought us much closer to a mechanistic understanding of the patterns. During the past two decades, macroecologists have successfully addressed technical problems posed by spatial autocorrelation, intercorrelation of predictor variables and non-linearity. However, curve-fitting approaches are problematic because most theoretical models in macroecology do not make quantitative predictions, and they do not incorporate interactions among multiple forces. As an alternative, we propose a mechanistic modelling approach. We describe computer simulation models of the stochastic origin, spread, and extinction of species' geographical ranges in an environmentally heterogeneous, gridded domain and describe progress to date regarding their implementation. The output from such a general simulation model (GSM) would, at a minimum, consist of the simulated distribution of species ranges on a map, yielding the predicted number of species in each grid cell of the domain. In contrast to curve-fitting analysis, simulation modelling explicitly incorporates the processes believed to be affecting the geographical ranges of species and generates a number of quantitative predictions that can be compared to empirical patterns. We describe three of the 'control knobs' for a GSM that specify simple rules for dispersal, evolutionary origins and environmental gradients. Binary combinations of different knob settings correspond to eight distinct simulation models, five of which are already represented in the literature of macroecology. The output from such a GSM will include the predicted species richness per grid cell, the range size frequency distribution, the simulated phylogeny and simulated geographical ranges of the component species, all of which can be compared to empirical patterns. Challenges to the development of the GSM include the measurement of goodness of fit (GOF) between observed data and model predictions, as well as the estimation, optimization and interpretation of the model parameters. The simulation approach offers new insights into the origin and maintenance of species richness patterns, and may provide a common framework for investigating the effects of contemporary climate, evolutionary history and geometric constraints on global biodiversity gradients. With further development, the GSM has the potential to provide a conceptual bridge between macroecology and historical biogeography.
                Bookmark

                Author and article information

                Contributors
                jalil.noroozi@univie.ac.at
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                10 September 2019
                10 September 2019
                2019
                : 9
                : 12991
                Affiliations
                [1 ]ISNI 0000 0001 2286 1424, GRID grid.10420.37, Department of Botany and Biodiversity Research, , University of Vienna, ; Vienna, Austria
                [2 ]ISNI 0000 0004 0612 7950, GRID grid.46072.37, Department of Plant Science, , University of Tehran, ; Tehran, Iran
                Author information
                http://orcid.org/0000-0003-4124-2359
                http://orcid.org/0000-0003-1777-6676
                http://orcid.org/0000-0003-2811-3317
                Article
                49417
                10.1038/s41598-019-49417-1
                6737179
                31506504
                3550afa6-6b6e-4945-8934-c0e5ac162aaf
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 January 2019
                : 23 August 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100002428, Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung);
                Award ID: P28489-B29
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                biodiversity,conservation biology,plant ecology,biogeography
                Uncategorized
                biodiversity, conservation biology, plant ecology, biogeography

                Comments

                Comment on this article