13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of MitoQ on Aging-Related Biomarkers: A Systematic Review and Meta-Analysis

      review-article
      , ,
      Oxidative Medicine and Cellular Longevity
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondria are metabolically active organelles that produce significant reactive oxygen species, linked with aging and degenerative diseases. In recent years, particular focus has been put on mitochondria-targeted antioxidants, to decrease the concentration of reactive oxygen species and help alleviate the accumulation of oxidative damage and associated aging. MitoQ is a mitochondria-targeted antioxidant of which is reported to support healthy aging. The aim of this systematic review is to investigate the effects of MitoQ on oxidative outcomes related to the aging process. A predeveloped search strategy was run against MEDLINE (Ovid), EMBASE (Ovid), and CINAHL databases, which identified 10,255 articles of interest, with 27 of these finalised for use after screening. Three outcomes had sufficient data to meta-analyse nitrotyrosine concentration (190 animals, SMD −0.67, 95% CI (−1.30, −0.05), p = 0.04), membrane potential (63 animals, MD 11.44, 95% CI (1.28–21.60), p = 0.03), and protein carbonyl concentration (182 animals, SMD −0.13, 95% CI (−0.44, 0.18), p = 0.41). MitoQ intervention produced a statistically significant reduction in nitrotyrosine concentration and increased membrane potential. MitoQ may be of some benefit in alleviating oxidative stress related to aging.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Oxidative Stress, Mitochondrial Dysfunction, and Aging

          Aging is an intricate phenomenon characterized by progressive decline in physiological functions and increase in mortality that is often accompanied by many pathological diseases. Although aging is almost universally conserved among all organisms, the underlying molecular mechanisms of aging remain largely elusive. Many theories of aging have been proposed, including the free-radical and mitochondrial theories of aging. Both theories speculate that cumulative damage to mitochondria and mitochondrial DNA (mtDNA) caused by reactive oxygen species (ROS) is one of the causes of aging. Oxidative damage affects replication and transcription of mtDNA and results in a decline in mitochondrial function which in turn leads to enhanced ROS production and further damage to mtDNA. In this paper, we will present the current understanding of the interplay between ROS and mitochondria and will discuss their potential impact on aging and age-related diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1

            Mitochondria play a crucial role in tubular injury in diabetic kidney disease (DKD). MitoQ is a mitochondria-targeted antioxidant that exerts protective effects in diabetic mice, but the mechanism underlying these effects is not clear. We demonstrated that mitochondrial abnormalities, such as defective mitophagy, mitochondrial reactive oxygen species (ROS) overexpression and mitochondrial fragmentation, occurred in the tubular cells of db/db mice, accompanied by reduced PINK and Parkin expression and increased apoptosis. These changes were partially reversed following an intraperitoneal injection of mitoQ. High glucose (HG) also induces deficient mitophagy, mitochondrial dysfunction and apoptosis in HK-2 cells, changes that were reversed by mitoQ. Moreover, mitoQ restored the expression, activity and translocation of HG-induced NF-E2-related factor 2 (Nrf2) and inhibited the expression of Kelch-like ECH-associated protein (Keap1), as well as the interaction between Nrf2 and Keap1. The reduced PINK and Parkin expression noted in HK-2 cells subjected to HG exposure was partially restored by mitoQ. This effect was abolished by Nrf2 siRNA and augmented by Keap1 siRNA. Transfection with Nrf2 siRNA or PINK siRNA in HK-2 cells exposed to HG conditions partially blocked the effects of mitoQ on mitophagy and tubular damage. These results suggest that mitoQ exerts beneficial effects on tubular injury in DKD via mitophagy and that mitochondrial quality control is mediated by Nrf2/PINK.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis of data from animal studies: a practical guide.

              Meta-analyses of data from human studies are invaluable resources in the life sciences and the methods to conduct these are well documented. Similarly there are a number of benefits in conducting meta-analyses on data from animal studies; they can be used to inform clinical trial design, or to try and explain discrepancies between preclinical and clinical trial results. However there are inherit differences between animal and human studies and so applying the same techniques for the meta-analysis of preclinical data is not straightforward. For example preclinical studies are frequently small and there is often substantial heterogeneity between studies. This may have an impact on both the method of calculating an effect size and the method of pooling data. Here we describe a practical guide for the meta-analysis of data from animal studies including methods used to explore sources of heterogeneity. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2018
                12 July 2018
                : 2018
                : 8575263
                Affiliations
                Faculty of Medical & Health Sciences, Discipline of Nutrition, The University of Auckland, Private Bag 92019, Auckland, New Zealand
                Author notes

                Academic Editor: Ilaria Peluso

                Author information
                http://orcid.org/0000-0002-6055-0595
                Article
                10.1155/2018/8575263
                6079400
                30116495
                35baf3c6-39e9-416b-97a9-fa2bc95f98e8
                Copyright © 2018 Andrea J. Braakhuis et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 February 2018
                : 24 April 2018
                : 3 May 2018
                Funding
                Funded by: University of Auckland
                Award ID: 36462.001
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article