14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways

      , , , , , , , ,
      Energies
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is still possible to comply with the Paris Climate Agreement to maintain a global temperature ‘well below +2.0 °C’ above pre-industrial levels. We present two global non-overshoot pathways (+2.0 °C and +1.5 °C) with regional decarbonization targets for the four primary energy sectors—power, heating, transportation, and industry—in 5-year steps to 2050. We use normative scenarios to illustrate the effects of efficiency measures and renewable energy use, describe the roles of increased electrification of the final energy demand and synthetic fuels, and quantify the resulting electricity load increases for 72 sub-regions. Non-energy scenarios include a phase-out of net emissions from agriculture, forestry, and other land uses, reductions in non-carbon greenhouse gases, and land restoration to scale up atmospheric CO2 removal, estimated at −377 Gt CO2 to 2100. An estimate of the COVID-19 effects on the global energy demand is included and a sensitivity analysis describes the impacts if implementation is delayed by 5, 7, or 10 years, which would significantly reduce the likelihood of achieving the 1.5 °C goal. The analysis applies a model network consisting of energy system, power system, transport, land-use, and climate models.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Natural climate solutions

          Significance Most nations recently agreed to hold global average temperature rise to well below 2 °C. We examine how much climate mitigation nature can contribute to this goal with a comprehensive analysis of “natural climate solutions” (NCS): 20 conservation, restoration, and/or improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We show that NCS can provide over one-third of the cost-effective climate mitigation needed between now and 2030 to stabilize warming to below 2 °C. Alongside aggressive fossil fuel emissions reductions, NCS offer a powerful set of options for nations to deliver on the Paris Climate Agreement while improving soil productivity, cleaning our air and water, and maintaining biodiversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paris Agreement climate proposals need a boost to keep warming well below 2 °C.

            The Paris climate agreement aims at holding global warming to well below 2 degrees Celsius and to "pursue efforts" to limit it to 1.5 degrees Celsius. To accomplish this, countries have submitted Intended Nationally Determined Contributions (INDCs) outlining their post-2020 climate action. Here we assess the effect of current INDCs on reducing aggregate greenhouse gas emissions, its implications for achieving the temperature objective of the Paris climate agreement, and potential options for overachievement. The INDCs collectively lower greenhouse gas emissions compared to where current policies stand, but still imply a median warming of 2.6-3.1 degrees Celsius by 2100. More can be achieved, because the agreement stipulates that targets for reducing greenhouse gas emissions are strengthened over time, both in ambition and scope. Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Old-growth forests as global carbon sinks.

              Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.
                Bookmark

                Author and article information

                Contributors
                Journal
                ENERGA
                Energies
                Energies
                MDPI AG
                1996-1073
                April 2021
                April 09 2021
                : 14
                : 8
                : 2103
                Article
                10.3390/en14082103
                35dcd227-fc23-4991-aed3-a0a34b1d1792
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article