121
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Complex Extracellular Sphingomyelinase of Pseudomonas aeruginosa Inhibits Angiogenesis by Selective Cytotoxicity to Endothelial Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hemolytic phospholipase C (PlcHR) expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC) produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase). Data presented herein indicate that picomolar (pM) concentrations of PlcHR are selectively lethal to endothelial cells (EC). An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS), but not control peptides (i.e., GDGRS), block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD) are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation), which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature). Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to ∼50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization). An active site mutant of PlcHR (Thr178Ala) exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where angiogenesis contributes pathological conditions (e.g., vascularization of tumors, diabetic retinopathy).

          Author Summary

          Pseudomonas aeruginosa is a major bacterial opportunistic pathogen responsible for acute (e.g., sepsis) and chronic infections (e.g., pulmonary). While it expresses assorted extracellular toxins that in one way or another contribute to pathogenesis, the precise cellular and molecular mechanisms by which these factors act is largely unknown. During septicemia, P. aeruginosa frequently causes vasculitis and thrombosis. Endothelial cells line the entire vascular system of mammals and have sundry key functions in infectious diseases, including thrombosis and inflammation. Endothelial cells are essential to the formation of new blood vessels (angiogenesis) needed for proper wound healing. This report describes in vitro and in vivo experiments demonstrating that an extracellular toxin, PlcHR, at very low (picomolar) concentrations, is highly lethal to endothelial cells and inhibits angiogenesis in vivo. Data herein also suggest that PlcHR is selectively toxic to endothelial cells through its ability to bind a cell receptor(s). These observations may be particularly relevant to the mechanisms by which P. aeruginosa causes vascular lesions and inhibits the healing of wounds during septic infections. Finally, the potent antiangiogenic attribute of PlcHR could be useful in the treatment of noninfectious diseases where angiogenesis contributes their pathogenesis, including the vascularization of tumors and the eye (e.g., diabetic retinopathy).

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Common virulence factors for bacterial pathogenicity in plants and animals.

          A Pseudomonas aeruginosa strain (UCBPP-PA14) is infectious both in an Arabidopsis thaliana leaf infiltration model and in a mouse full-thickness skin burn model. UCBPP-PA14 exhibits ecotype specificity for Arabidopsis, causing a range of symptoms from none to severe in four different ecotypes. In the mouse model, UCBPP-PA14 is as lethal as other well-studied P. aeruginosa strains. Mutations in the UCBPP-PA14 toxA, plcS, and gacA genes resulted in a significant reduction in pathogenicity in both hosts, indicating that these genes encode virulence factors required for the full expression of pathogenicity in both plants and animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrins in angiogenesis and lymphangiogenesis.

            Blood vessels promote tumour growth, and both blood and lymphatic vessels facilitate tumour metastasis by serving as conduits for the transport of tumour cells to new sites. Angiogenesis and lymphangiogenesis are regulated by integrins, which are members of a family of cell surface receptors whose ligands are extracellular matrix proteins and immunoglobulin superfamily molecules. Select integrins promote endothelial cell migration and survival during angiogenesis and lymphangiogenesis, whereas other integrins promote pro-angiogenic macrophage trafficking to tumours. Several integrin-targeted therapeutic agents are currently in clinical trials for cancer therapy. Here, we review the evidence implicating integrins as a family of fundamental regulators of angiogenesis and lymphangiogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of caspase activation.

              The core effectors of apoptosis encompass proteolytic enzymes of the caspase family, which reside as latent precursors in most nucleated metazoan cells. A majority of studies on apoptosis are based on the assumption that caspase precursors are activated by cleavage, a common mechanism for most protease zymogen activations. Although this appears to be true for the executioner caspases, recent research points to a distinct activation mechanism for the initiator caspases that trigger the apoptotic pathways. This mechanism is proximity-induced dimerization without cleavage, and its elucidation has led to the revision of concepts of feedback regulation of apoptosis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2009
                May 2009
                8 May 2009
                : 5
                : 5
                : e1000420
                Affiliations
                [1 ]Department of Microbiology, University of Colorado Denver, Anschutz Medical Center, Aurora, Colorado, United States of America
                [2 ]Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
                [3 ]The Vascular Biology Program, Children's Hospital Boston, and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
                Massachusetts General Hospital, United States of America
                Author notes
                [¤]

                Current address: Department of Medicine, Section of Infectious Diseases, Temple University Hospital, Philadelphia, Pennsylvania, United States of America

                Conceived and designed the experiments: MLV MJS HG JC. Performed the experiments: MLV MJS AIV SJW REB JC. Analyzed the data: MLV MJS AIV SJW HG REB JC. Contributed reagents/materials/analysis tools: AIV SJW HG REB. Wrote the paper: MLV JC.

                Article
                08-PLPA-RA-1522R2
                10.1371/journal.ppat.1000420
                2673038
                19424430
                3600c393-f5fd-420c-a320-250e69453725
                Vasil et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 November 2008
                : 8 April 2009
                Page count
                Pages: 16
                Categories
                Research Article
                Biochemistry/Protein Chemistry
                Cell Biology/Cell Signaling
                Genetics and Genomics/Disease Models
                Infectious Diseases/Bacterial Infections
                Infectious Diseases/Nosocomial and Healthcare-Associated Infections
                Microbiology/Cellular Microbiology and Pathogenesis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article