2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Intersectin 2 controls actin cap formation and meiotic division in mouse oocytes through the Cdc42 pathway

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Actin, a central player in cell shape and movement.

          The protein actin forms filaments that provide cells with mechanical support and driving forces for movement. Actin contributes to biological processes such as sensing environmental forces, internalizing membrane vesicles, moving over surfaces, and dividing the cell in two. These cellular activities are complex; they depend on interactions of actin monomers and filaments with numerous other proteins. Here, we present a summary of the key questions in the field and suggest how those questions might be answered. Understanding actin-based biological phenomena will depend on identifying the participating molecules and defining their molecular mechanisms. Comparisons of quantitative measurements of reactions in live cells with computer simulations of mathematical models will also help generate meaningful insights.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells.

            Rho family G proteins, including Rac and Cdc42, regulate a variety of cellular functions such as morphology, motility, and gene expression. We developed fluorescent resonance energy transfer-based probes which monitored the local balance between the activities of guanine nucleotide exchange factors and GTPase-activating proteins for Rac1 and Cdc42 at the membrane. These probes, named Raichu-Rac and Raichu-Cdc42, consisted of a Cdc42- and Rac-binding domain of Pak, Rac1 or Cdc42, a pair of green fluorescent protein mutants, and a CAAX box of Ki-Ras. With these probes, we video imaged the Rac and Cdc42 activities. In motile HT1080 cells, activities of both Rac and Cdc42 gradually increased toward the leading edge and decreased rapidly when cells changed direction. Under a higher magnification, we observed that Rac activity was highest immediately behind the leading edge, whereas Cdc42 activity was most prominent at the tip of the leading edge. Raichu-Rac and Raichu-Cdc42 were also applied to a rapid and simple assay for the analysis of putative guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) in living cells. Among six putative GEFs and GAPs, we identified KIAA0362/DBS as a GEF for Rac and Cdc42, KIAA1256 as a GEF for Cdc42, KIAA0053 as a GAP for Rac and Cdc42, and KIAA1204 as a GAP for Cdc42. In conclusion, use of these single-molecule probes to determine Rac and Cdc42 activity will accelerate the analysis of the spatiotemporal regulation of Rac and Cdc42 in a living cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Concentric zones of active RhoA and Cdc42 around single cell wounds

              Rho GTPases control many cytoskeleton-dependent processes, but how they regulate spatially distinct features of cytoskeletal function within a single cell is poorly understood. Here, we studied active RhoA and Cdc42 in wounded Xenopus oocytes, which assemble and close a dynamic ring of actin filaments (F-actin) and myosin-2 around wound sites. RhoA and Cdc42 are rapidly activated around wound sites in a calcium-dependent manner and segregate into distinct, concentric zones around the wound, with active Cdc42 in the approximate middle of the F-actin array and active RhoA on the interior of the array. These zones form before F-actin accumulation, and then move in concert with the closing array. Microtubules and F-actin are required for normal zone organization and dynamics, as is crosstalk between RhoA and Cdc42. Each of the zones makes distinct contributions to the organization and function of the actomyosin wound array. We propose that similar rho activity zones control related processes such as cytokinesis.
                Bookmark

                Author and article information

                Journal
                The FASEB Journal
                The FASEB Journal
                FASEB
                0892-6638
                1530-6860
                October 2017
                October 2017
                : 31
                : 10
                : 4277-4285
                Affiliations
                [1 ]State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China;
                [2 ]Center of Reproductive Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China;
                [3 ]Key Laboratory of Birth Defects Prevention, National Health and Family Planning Commission, Zhengzhou, China;
                [4 ]Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
                Article
                10.1096/fj.201700179R
                28626024
                361bd641-d799-47c2-b9b7-d7c42447194e
                © 2017
                History

                Comments

                Comment on this article