Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Residues and dynamics of pymetrozine in rice field ecosystem.

      Chemosphere
      Ecosystem, Environmental Monitoring, Environmental Pollutants, analysis, chemistry, Fresh Water, Insecticides, Kinetics, Oryza sativa, Pesticide Residues, Soil, Triazines

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fate of pymetrozine was studied in rice field ecosystem, and a simple and reliable analytical method for determination of pymetrozine in soil, rice straw, paddy water and brown rice was developed. Pymetrozine residues were extracted from samples, cleaned up by solid phase extraction (SPE) and then determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). The average recovery was 81.2-88.1% from soil, 83.4-88.6% from rice straw, 87.3-94.1% from paddy water and 82.9-85.3% from brown rice. The relative standard deviation (RSD) was less than 15%. The limits of detection (LODs) of pymetrozine calculated as a sample concentration were 0.0003 mg kg(-1) (mg L(-1)) for soil and paddy water, 0.001 mg kg(-1) for brown rice and rice straw. The results of kinetics study of pymetrozine residue showed that pymetrozine degradation in water, soil, and rice straw coincided with C=0.194e(-0.986t), C=0.044e(-0.099t), and C=0.988e(-0.780t), respectively; the half-lives were about 0.70 d, 7.0 d and 0.89 d, respectively. The degradation rate of pymetrozine in water was the fastest, followed by rice straw. The highest final pymetrozine residues in brown rice were 0.01 mg kg(-1), which was lower than the EU's upper limit of 0.02 mg kg(-1) in rice. Therefore, a dosage of 300-600 g a.i.hm(-2) was recommended, which could be considered as safe to human beings and animals. Copyright © 2010 Elsevier Ltd. All rights reserved.

          Related collections

          Author and article information

          Journal
          21074245
          10.1016/j.chemosphere.2010.10.053

          Chemistry
          Ecosystem,Environmental Monitoring,Environmental Pollutants,analysis,chemistry,Fresh Water,Insecticides,Kinetics,Oryza sativa,Pesticide Residues,Soil,Triazines

          Comments

          Comment on this article