15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs) from radiation injury is an important goal in the development of medical countermeasure agents (MCM). We recently identified thioredoxin (TXN) as a novel molecule that has marked protective and proliferative effects on HSCs. In the current study, we investigated the effectiveness of TXN in rescuing mice from a lethal dose of total body radiation (TBI) and in enhancing hematopoietic reconstitution following a lethal dose of irradiation.

          Methods

          We used in-vivo and in-vitro methods to understand the biological and molecular mechanisms of TXN on radiation mitigation. BABL/c mice were used for the survival study and a flow cytometer was used to quantify the HSC population and cell senescence. A hematology analyzer was used for the peripheral blood cell count, including white blood cells (WBCs), red blood cells (RBCs), hemoglobin, and platelets. Colony forming unit (CFU) assay was used to study the colongenic function of HSCs. Hematoxylin and eosin staining was used to determine the bone marrow cellularity. Senescence-associated β-galactosidase assay was used for cell senescence. Western blot analysis was used to evaluate the DNA damage and senescence protein expression. Immunofluorescence staining was used to measure the expression of γ-H2AX foci for DNA damage.

          Results

          We found that administration of TXN 24 h following irradiation significantly mitigates BALB/c mice from TBI-induced death: 70% of TXN-treated mice survived, whereas only 25% of saline-treated mice survived. TXN administration led to enhanced recovery of peripheral blood cell counts, bone marrow cellularity, and HSC population as measured by c-Kit +Sca-1 +Lin (KSL) cells, SLAM + KSL cells and CFUs. TXN treatment reduced cell senescence and radiation-induced double-strand DNA breaks in both murine bone marrow lineage-negative (Lin ) cells and primary fibroblasts. Furthermore, TXN decreased the expression of p16 and phosphorylated p38. Our data suggest that TXN modulates diverse cellular processes of HSCs.

          Conclusions

          Administration of TXN 24 h following irradiation mitigates radiation-induced lethality. To the best of our knowledge, this is the first report demonstrating that TXN reduces radiation-induced lethality. TXN shows potential utility in the mitigation of radiation-induced hematopoietic injury.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways.

          Mitogen-activated protein (MAP) kinase cascades are activated in response to various extracellular stimuli, including growth factors and environmental stresses. A MAP kinase kinase kinase (MAPKKK), termed ASK1, was identified that activated two different subgroups of MAP kinase kinases (MAPKK), SEK1 (or MKK4) and MKK3/MAPKK6 (or MKK6), which in turn activated stress-activated protein kinase (SAPK, also known as JNK; c-Jun amino-terminal kinase) and p38 subgroups of MAP kinases, respectively. Overexpression of ASK1 induced apoptotic cell death, and ASK1 was activated in cells treated with tumor necrosis factor-alpha (TNF-alpha). Moreover, TNF-alpha-induced apoptosis was inhibited by a catalytically inactive form of ASK1. ASK1 may be a key element in the mechanism of stress- and cytokine-induced apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells.

            Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm(-/-) mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS-p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging.

              Expression of the p16(INK4a) tumor suppressor sharply increases with age in most mammalian tissues, and contributes to an age-induced functional decline of certain self-renewing compartments. These observations have suggested that p16(INK4a) expression could be a biomarker of mammalian aging. To translate this notion to human use, we determined p16(INK4a) expression in cellular fractions of human whole blood, and found highest expression in peripheral blood T-lymphocytes (PBTL). We then measured INK4/ARF transcript expression in PBTL from two independent cohorts of healthy humans (170 donors total), and analyzed their relationship with donor characteristics. Expression of p16(INK4a), but not other INK4/ARF transcripts, appeared to exponentially increase with donor chronologic age. Importantly, p16(INK4a) expression did not independently correlate with gender or body-mass index, but was significantly associated with tobacco use and physical inactivity. In addition, p16(INK4a) expression was associated with plasma interleukin-6 concentration, a marker of human frailty. These data suggest that p16(INK4a) expression in PBTL is an easily measured, peripheral blood biomarker of molecular age.
                Bookmark

                Author and article information

                Contributors
                pasupathi.sundaramoorthy@duke.edu
                qinhong.wang@duke.edu
                zheng.zhihong@duke.edu
                yiqun@duke.edu
                benny.chen@duke.edu
                phuong.doan@duke.edu
                nelson.chao@duke.edu
                919 668-2331 , yubin.kang@duke.edu
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                15 November 2017
                15 November 2017
                2017
                : 8
                : 263
                Affiliations
                [1 ]ISNI 0000000100241216, GRID grid.189509.c, Division of Hematological Malignancies and Cellular Therapy, , Duke University Medical Center, ; DUMC 3961, 2400 Pratt Street, Suite 9000, Durham, NC 27710 USA
                [2 ]ISNI 0000 0004 1758 0478, GRID grid.411176.4, Department of Hematology, Fujian Provincial Key Laboratory of Hematology, , Fujian Medical University Union Hospital, ; Fuzhou, Fujian 350001 China
                Article
                711
                10.1186/s13287-017-0711-2
                5688691
                29141658
                36d17039-6b97-4fcd-94fd-fd1f1f413ff0
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 August 2017
                : 3 October 2017
                : 24 October 2017
                Funding
                Funded by: National Institute of Allergy and Infectious Diseases
                Award ID: U19AI067773
                Award Recipient :
                Funded by: National Heart, Lung, and Blood Institute (US)
                Award ID: K08HL103780, NCI R01CA197792
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Molecular medicine
                thioredoxin,radiation exposure,mitigation,hematopoietic stem cells,senescence
                Molecular medicine
                thioredoxin, radiation exposure, mitigation, hematopoietic stem cells, senescence

                Comments

                Comment on this article