58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vpu Binds Directly to Tetherin and Displaces It from Nascent Virions

      research-article
      , , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tetherin (Bst2/CD317/HM1.24) is an interferon-induced antiviral host protein that inhibits the release of many enveloped viruses by tethering virions to the cell surface. The HIV-1 accessory protein, Vpu, antagonizes Tetherin through a variety of proposed mechanisms, including surface downregulation and degradation. Previous studies have demonstrated that mutation of the transmembrane domains (TMD) of both Vpu and Tetherin affect antagonism, but it is not known whether Vpu and Tetherin bind directly to each other. Here, we use cysteine-scanning mutagenesis coupled with oxidation-induced cross-linking to demonstrate that Vpu and Tetherin TMDs bind directly to each other in the membranes of living cells and to map TMD residues that contact each other. We also reveal a property of Vpu, namely the ability to displace Tetherin from sites of viral assembly, which enables Vpu to exhibit residual Tetherin antagonist activity in the absence of surface downregulation or degradation. Elements in the cytoplasmic tail domain (CTD) of Vpu mediate this displacement activity, as shown by experiments in which Vpu CTD fragments were directly attached to Tetherin in the absence of the TMD. In particular, the C-terminal α-helix (H2) of Vpu CTD is sufficient to remove Tetherin from sites of viral assembly and is necessary for full Tetherin antagonist activity. Overall, these data demonstrate that Vpu and Tetherin interact directly via their transmembrane domains enabling activities present in the CTD of Vpu to remove Tetherin from sites of viral assembly.

          Author Summary

          At the cell surface, HIV-1 particles are assembled and then released to infect new cells. However, an anti-viral host restriction factor, Tetherin, can tether outgoing virions to the infected cell surface, preventing their dissemination. HIV-1 overcomes this block through the expression of the viral accessory protein Vpu, which antagonizes Tetherin. In this study, we demonstrate that the domains of Vpu and Tetherin that are embedded in the outer cell membrane bind directly to each other within the membrane, and we identify amino acids that participate directly in the interaction between these two proteins. After binding to Tetherin, Vpu can induce its removal from the cell surface and degradation. However, a mutant Vpu lacking these activities retains some capacity to antagonize Tetherin. We show that this residual activity requires a particular portion of the intracellular domain of Vpu and is manifested as an ability to displace Tetherin from sites of viral assembly, without affecting the overall level of Tetherin at the cell surface. These data indicate that Vpu directly binds to Tetherin and then employs multiple mechanisms, including displacement, to counteract Tetherin's ability to restrict virus particle release.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu.

          Human cells possess an antiviral activity that inhibits the release of retrovirus particles, and other enveloped virus particles, and is antagonized by the HIV-1 accessory protein, Vpu. This antiviral activity can be constitutively expressed or induced by interferon-alpha, and it consists of protein-based tethers, which we term 'tetherins', that cause retention of fully formed virions on infected cell surfaces. Using deductive constraints and gene expression analyses, we identify CD317 (also called BST2 or HM1.24), a membrane protein of previously unknown function, as a tetherin. Specifically, CD317 expression correlated with, and induced, a requirement for Vpu during HIV-1 and murine leukaemia virus particle release. Furthermore, in cells where HIV-1 virion release requires Vpu expression, depletion of CD317 abolished this requirement. CD317 caused retention of virions on cell surfaces and, after endocytosis, in CD317-positive compartments. Vpu co-localized with CD317 and inhibited these effects. Inhibition of Vpu function and consequent mobilization of tetherin's antiviral activity is a potential therapeutic strategy in HIV/AIDS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein.

            The HIV-1 accessory protein Vpu counteracts a host factor that restricts virion release from infected cells. Here we show that the interferon-induced cellular protein BST-2/HM1.24/CD317 is such a factor. BST-2 is downregulated from the cell surface by Vpu, and BST-2 is specifically expressed in cells that support the vpu phenotype. Exogenous expression of BST-2 inhibits HIV-1 virion release, while suppression of BST-2 relieves the requirement for Vpu. Downregulation of BST-2 requires both the transmembrane/ion channel domain and conserved serines in the cytoplasmic domain of Vpu. Endogenous BST-2 colocalizes with the HIV-1 structural protein Gag in endosomes and at the plasma membrane, suggesting that BST-2 traps virions within and on infected cells. The unusual structure of BST-2, which includes a transmembrane domain and a lumenal GPI anchor, may allow it to retain nascent enveloped virions on cellular membranes, providing a mechanism of viral restriction counteracted by a specific viral accessory protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tetherin inhibits HIV-1 release by directly tethering virions to cells.

              Tetherin is an interferon-induced protein whose expression blocks the release of HIV-1 and other enveloped viral particles. The underlying mechanism by which tetherin functions and whether it directly or indirectly causes virion retention are unknown. Here, we elucidate the mechanism by which tetherin exerts its antiviral activity. We demonstrate, through mutational analyses and domain replacement experiments, that tetherin configuration rather than primary sequence is critical for antiviral activity. These findings allowed the design of a completely artificial protein, lacking sequence homology with native tetherin, that nevertheless mimicked its antiviral activity. We further show that tetherin is incorporated into HIV-1 particles as a parallel homodimer using either of its two membrane anchors. These results indicate that tetherin functions autonomously and directly and that infiltration of virion envelopes by one or both of tetherin's membrane anchors is necessary, and likely sufficient, to tether enveloped virus particles that bud through the plasma membrane.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                April 2013
                April 2013
                25 April 2013
                : 9
                : 4
                : e1003299
                Affiliations
                [1]Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
                Harvard Medical School, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MWM PDB. Performed the experiments: MWM TZ. Analyzed the data: MWM PDB. Contributed reagents/materials/analysis tools: MWM TZ. Wrote the paper: MWM TZ PDB.

                Article
                PPATHOGENS-D-12-02496
                10.1371/journal.ppat.1003299
                3635990
                23633949
                371ad436-4e86-4bdb-937d-1aff598867d6
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 October 2012
                : 25 February 2013
                Page count
                Pages: 22
                Funding
                This work was supported by NIH grant R01AI 50111 (to PDB) by a Mathide Krim AmFAR postdoctoral Fellowship (MWM) and by HHMI. Matthew McNatt is supported by a Mathilde Krim Postdoctoral fellowship (ID No. 107972) from amFAR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Virology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article