18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400–2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486–2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local “searchlights” and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processing.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Information-based functional brain mapping.

          The development of high-resolution neuroimaging and multielectrode electrophysiological recording provides neuroscientists with huge amounts of multivariate data. The complexity of the data creates a need for statistical summary, but the local averaging standardly applied to this end may obscure the effects of greatest neuroscientific interest. In neuroimaging, for example, brain mapping analysis has focused on the discovery of activation, i.e., of extended brain regions whose average activity changes across experimental conditions. Here we propose to ask a more general question of the data: Where in the brain does the activity pattern contain information about the experimental condition? To address this question, we propose scanning the imaged volume with a "searchlight," whose contents are analyzed multivariately at each location in the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Speech recognition with primarily temporal cues.

            Nearly perfect speech recognition was observed under conditions of greatly reduced spectral information. Temporal envelopes of speech were extracted from broad frequency bands and were used to modulate noises of the same bandwidths. This manipulation preserved temporal envelope cues in each band but restricted the listener to severely degraded information on the distribution of spectral energy. The identification of consonants, vowels, and words in simple sentences improved markedly as the number of bands increased; high speech recognition performance was obtained with only three bands of modulated noise. Thus, the presentation of a dynamic temporal pattern in only a few broad spectral regions is sufficient for the recognition of speech.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Subdivisions of auditory cortex and processing streams in primates.

              The auditory system of monkeys includes a large number of interconnected subcortical nuclei and cortical areas. At subcortical levels, the structural components of the auditory system of monkeys resemble those of nonprimates, but the organization at cortical levels is different. In monkeys, the ventral nucleus of the medial geniculate complex projects in parallel to a core of three primary-like auditory areas, AI, R, and RT, constituting the first stage of cortical processing. These areas interconnect and project to the homotopic and other locations in the opposite cerebral hemisphere and to a surrounding array of eight proposed belt areas as a second stage of cortical processing. The belt areas in turn project in overlapping patterns to a lateral parabelt region with at least rostral and caudal subdivisions as a third stage of cortical processing. The divisions of the parabelt distribute to adjoining auditory and multimodal regions of the temporal lobe and to four functionally distinct regions of the frontal lobe. Histochemically, chimpanzees and humans have an auditory core that closely resembles that of monkeys. The challenge for future researchers is to understand how this complex system in monkeys analyzes and utilizes auditory information.
                Bookmark

                Author and article information

                Journal
                Cereb Cortex
                Cereb. Cortex
                cercor
                cercor
                Cerebral Cortex (New York, NY)
                Oxford University Press
                1047-3211
                1460-2199
                September 2014
                12 April 2013
                12 April 2013
                : 24
                : 9
                : 2350-2361
                Affiliations
                [1 ]Institute of Cognitive Neuroscience,
                [2 ]Department of Speech, Hearing and Phonetic Sciences,
                [3 ]Department of Computer Science, Centre for Computational Statistics and Machine Learning,University College London , LondonWC1E 6BT, UK
                [4 ]Department of Clinical Neuroscience, University Medical School , Geneva CH-1211, Switzerland
                [5 ]Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London , LondonW12 0NN, UK
                [6 ]Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College , London SE5 8AF, UK
                [7 ]Department of Psychology, Royal Holloway University, University of London , EghamTW20 0EX, UK and
                [8 ]MRC Cognition and Brain Sciences Unit, CambridgeCB2 7EF, UK
                Author notes
                Address correspondence to S. Evans, Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AR, UK. Email: samuel.evans@ 123456ucl.ac.uk

                S. Evans and J.S. Kyong are joint first authors.

                Article
                bht083
                10.1093/cercor/bht083
                4128702
                23585519
                3749442d-0687-41bb-b9bf-0f20eb26c0de
                © The Author 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Categories
                Articles

                Neurology
                fmri,intelligibility,multivariate pattern analysis,speech perception,superior temporal sulcus

                Comments

                Comment on this article