3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hydrogen-bonded oligothiophene rosettes with a benzodithiophene terminal unit: self-assembly and application to bulk heterojunction solar cells

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Synthesis of conjugated polymers for organic solar cell applications.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small molecule organic semiconductors on the move: promises for future solar energy technology.

            This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solution-processed small-molecule solar cells with 6.7% efficiency.

              Organic photovoltaic devices that can be fabricated by simple processing techniques are under intense investigation in academic and industrial laboratories because of their potential to enable mass production of flexible and cost-effective devices. Most of the attention has been focused on solution-processed polymer bulk-heterojunction (BHJ) solar cells. A combination of polymer design, morphology control, structural insight and device engineering has led to power conversion efficiencies (PCEs) reaching the 6-8% range for conjugated polymer/fullerene blends. Solution-processed small-molecule BHJ (SM BHJ) solar cells have received less attention, and their efficiencies have remained below those of their polymeric counterparts. Here, we report efficient solution-processed SM BHJ solar cells based on a new molecular donor, DTS(PTTh(2))(2). A record PCE of 6.7% under AM 1.5 G irradiation (100 mW cm(-2)) is achieved for small-molecule BHJ devices from DTS(PTTh(2))(2):PC(70)BM (donor to acceptor ratio of 7:3). This high efficiency was obtained by using remarkably small percentages of solvent additive (0.25% v/v of 1,8-diiodooctane, DIO) during the film-forming process, which leads to reduced domain sizes in the BHJ layer. These results provide important progress for solution-processed organic photovoltaics and demonstrate that solar cells fabricated from small donor molecules can compete with their polymeric counterparts.
                Bookmark

                Author and article information

                Journal
                CHCOFS
                Chem. Commun.
                Chem. Commun.
                Royal Society of Chemistry (RSC)
                1359-7345
                1364-548X
                2016
                2016
                : 52
                : 50
                : 7874-7877
                Article
                10.1039/C6CC03430F
                378d318c-834f-4e3e-9737-fa446bf1f21e
                © 2016
                History

                Comments

                Comment on this article