10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dendritic Cells Pulsed with Exosomes in Combination with PD-1 Antibody Increase the Efficacy of Sorafenib in Hepatocellular Carcinoma Model 1 2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advanced hepatocellular carcinoma (HCC) has limited therapeutic options. Immunotherapy is a promising treatment, while sorafenib is a first-line drug-based treatment for advanced HCC. However, the efficacy of sorafenib and immunotherapy in combination, have not been clearly evaluated. Sorafenib treatment has been shown to promote immunosuppression by increasing hypoxia in orthotopic HCC models. Here, we found that sorafenib treatment in mice with orthotopic HCC increased the expression of inhibitor programmed death-ligand 1 (PD-L1) and T-regulatory cells in tumor tissues. We pulsed dendritic cells with exosomes derived from tumor cells (DC-TEX) and found that the number of T-regulatory cells decreased and the number of CD8+T cells increased. However, combining DC-TEX and sorafenib did not prolong survival in these mice. Moreover, we found that the number of PD-1+CD8+T cells significantly increased after DC-TEX treatment. Therefore, we next added PD-1 antibody (PD-1 Ab) to the treatment regimen to block the PD-1/PD-L1 pathway, and found that the exhausted CD8+T cells were restored, without affecting the number of T-regulatory cells. Thus, our data suggest that the combination of DC-TEX and PD-1 Ab enhanced the efficacy of sorafenib, but treatment with either DC-TEX or PD-1 Ab alone, did not.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers.

          For almost four decades, my work has focused on one challenge: improving the delivery and efficacy of anticancer therapeutics. Working on the hypothesis that the abnormal tumor microenvironment-characterized by hypoxia and high interstitial fluid pressure--fuels tumor progression and treatment resistance, we developed an array of sophisticated imaging technologies and animal models as well as mathematic models to unravel the complex biology of tumors. Using these tools, we demonstrated that the blood and lymphatic vasculature, fibroblasts, immune cells, and extracellular matrix associated with tumors are abnormal, which together create a hostile tumor microenvironment. We next hypothesized that agents that induce normalization of the microenvironment can improve treatment outcome. Indeed, we demonstrated that judicious use of antiangiogenic agents--originally designed to starve tumors--could transiently normalize tumor vasculature, alleviate hypoxia, increase delivery of drugs and antitumor immune cells, and improve the outcome of various therapies. Our trials of antiangiogenics in patients with newly diagnosed and recurrent glioblastoma supported this concept. They revealed that patients whose tumor blood perfusion increased in response to cediranib survived 6 to 9 months longer than those whose blood perfusion did not increase. The normalization hypothesis also opened doors to treating various nonmalignant diseases characterized by abnormal vasculature, such as neurofibromatosis type 2. More recently, we discovered that antifibrosis drugs capable of normalizing the tumor microenvironment can improve the delivery and efficacy of nano- and molecular medicines. Our current efforts are directed at identifying predictive biomarkers and more-effective strategies to normalize the tumor microenvironment for enhancing anticancer therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.

            Although patients with advanced refractory solid tumors have poor prognosis, the clinical development of targeted protein kinase inhibitors offers hope for the future treatment of many cancers. In vivo and in vitro studies have shown that the oral multikinase inhibitor, sorafenib, inhibits tumor growth and disrupts tumor microvasculature through antiproliferative, antiangiogenic, and/or proapoptotic effects. Sorafenib has shown antitumor activity in phase II/III trials involving patients with advanced renal cell carcinoma and hepatocellular carcinoma. The multiple molecular targets of sorafenib (the serine/threonine kinase Raf and receptor tyrosine kinases) may explain its broad preclinical and clinical activity. This review highlights the antitumor activity of sorafenib across a variety of tumor types, including renal cell, hepatocellular, breast, and colorectal carcinomas in the preclinical setting. In particular, preclinical evidence that supports the different mechanisms of action of sorafenib is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway.

              The programmed death 1 (PD-1) receptor and its ligands programmed death ligand 1 (PD-L1) and PD-L2, members of the CD28 and B7 families, play critical roles in T cell coinhibition and exhaustion. Overexpression of PD-L1 and PD-1 on tumor cells and tumor-infiltrating lymphocytes, respectively, correlates with poor disease outcome in some human cancers. Monoclonal antibodies (mAbs) blockading the PD-1/PD-L1 pathway have been developed for cancer immunotherapy via enhancing T cell functions. Clinical trials with mAbs to PD-1 and PD-L1 have shown impressive response rates in patients, particularly for melanoma, non-small-cell lung cancer (NSCLC), renal cell carcinoma (RCC), and bladder cancer. Further studies are needed to dissect the mechanisms of variable response rate, to identify biomarkers for clinical response, to develop small-molecule inhibitors, and to combine these treatments with other therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Transl Oncol
                Transl Oncol
                Translational Oncology
                Neoplasia Press
                1936-5233
                28 January 2018
                April 2018
                28 January 2018
                : 11
                : 2
                : 250-258
                Affiliations
                [* ]Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin 300192, China
                []Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
                []Third Central Clinical College, Tianjin Medical University, Tianjin 300170, China
                Author notes
                [* ]Address all correspondence to: Zuoxing Niu, Shandong Cancer Hospital and Institute, #440 Jiyan Road, Huaiyin District, Jinan 250117, China.Shandong Cancer Hospital and Institute#440 Jiyan Road, Huaiyin DistrictJinan250117China nzxsdth@ 123456163.com
                Article
                S1936-5233(17)30393-5
                10.1016/j.tranon.2018.01.001
                5789129
                37c24c82-2530-4b0b-9f89-0d5b457921be
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 7 November 2017
                : 25 December 2017
                : 3 January 2018
                Categories
                Original article

                Comments

                Comment on this article