8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subcritical Hopf Bifurcation and Stochastic Resonance of Electrical Activities in Neuron under Electromagnetic Induction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The FitzHugh–Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Impulses and Physiological States in Theoretical Models of Nerve Membrane

          Van der Pol's equation for a relaxation oscillator is generalized by the addition of terms to produce a pair of non-linear differential equations with either a stable singular point or a limit cycle. The resulting "BVP model" has two variables of state, representing excitability and refractoriness, and qualitatively resembles Bonhoeffer's theoretical model for the iron wire model of nerve. This BVP model serves as a simple representative of a class of excitable-oscillatory systems including the Hodgkin-Huxley (HH) model of the squid giant axon. The BVP phase plane can be divided into regions corresponding to the physiological states of nerve fiber (resting, active, refractory, enhanced, depressed, etc.) to form a "physiological state diagram," with the help of which many physiological phenomena can be summarized. A properly chosen projection from the 4-dimensional HH phase space onto a plane produces a similar diagram which shows the underlying relationship between the two models. Impulse trains occur in the BVP and HH models for a range of constant applied currents which make the singular point representing the resting state unstable.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Noise in the nervous system.

            Noise--random disturbances of signals--poses a fundamental problem for information processing and affects all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecular to the behavioural level, and show how noise contributes to trial-to-trial variability. We highlight how noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise, and briefly discuss noise's potential benefits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NEURAL EXCITABILITY, SPIKING AND BURSTING

              Bifurcation mechanisms involved in the generation of action potentials (spikes) by neurons are reviewed here. We show how the type of bifurcation determines the neuro-computational properties of the cells. For example, when the rest state is near a saddle-node bifurcation, the cell can fire all-or-none spikes with an arbitrary low frequency, it has a well-defined threshold manifold, and it acts as an integrator; i.e. the higher the frequency of incoming pulses, the sooner it fires. In contrast, when the rest state is near an Andronov–Hopf bifurcation, the cell fires in a certain frequency range, its spikes are not all-or-none, it does not have a well-defined threshold manifold, it can fire in response to an inhibitory pulse, and it acts as a resonator; i.e. it responds preferentially to a certain (resonant) frequency of the input. Increasing the input frequency may actually delay or terminate its firing. We also describe the phenomenon of neural bursting, and we use geometric bifurcation theory to extend the existing classification of bursters, including many new types. We discuss how the type of burster defines its neuro-computational properties, and we show that different bursters can interact, synchronize and process information differently.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Comput Neurosci
                Front Comput Neurosci
                Front. Comput. Neurosci.
                Frontiers in Computational Neuroscience
                Frontiers Media S.A.
                1662-5188
                06 February 2018
                2018
                : 12
                : 6
                Affiliations
                [1] 1School of Mathematics and Statistics, Xi'an Jiaotong University , Xi'an, China
                [2] 2School of Aerospace Engineering, Xi'an Jiaotong University , Xi'an, China
                [3] 3The State Key Laboratory of Strength and Vibration for Mechanical Structures , Xi'an, China
                Author notes

                Edited by: Carlo Laing, College of Sciences, Massey University, New Zealand

                Reviewed by: Xiaojuan Sun, Beijing University of Posts and Telecommunications, China; Fang Han, Donghua University, China

                *Correspondence: Yan-Mei Kang ymkang@ 123456xjtu.edu.cn
                Article
                10.3389/fncom.2018.00006
                5808182
                29467642
                37edd2ea-4c90-4dd6-b763-358057fe5d13
                Copyright © 2018 Fu, Kang and Xie.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 October 2017
                : 16 January 2018
                Page count
                Figures: 8, Tables: 0, Equations: 16, References: 39, Pages: 10, Words: 5678
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 11772241
                Award ID: 11672219
                Categories
                Neuroscience
                Original Research

                Neurosciences
                electromagnetic induction,subcritical hopf bifurcation,stochastic resonance,weak signal detection,improved fitzhugh-nagumo model

                Comments

                Comment on this article