0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Genomic Regions and Candidate Genes for Litter Traits in French Large White Pigs Using Genome-Wide Association Studies

      , , , , , , , , ,
      Animals
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reproductive traits of sows are one of the important economic traits in pig production, and their performance directly affects the economic benefits of the entire pig industry. In this study, a total of 895 French Large White pigs were genotyped by GeneSeek Porcine 50K SNP Beadchip and four phenotypic traits of 1407 pigs were recorded, including total number born (TNB), number born alive (NBA), number healthy piglets (NHP) and litter weight born alive (LWB). To identify genomic regions and genes for these traits, we used two approaches: a single-locus genome-wide association study (GWAS) and a single-step GWAS (ssGWAS). Overall, a total of five SNPs and 36 genomic regions were identified by single-locus GWAS and ssGWAS, respectively. Notably, fourof all five significant SNPs were located in 10.72–11.06 Mb on chromosome 7, were also identified by ssGWAS. These regions explained the highest or second highest genetic variance in the TNB, NBA and NHP traits and harbor the protein coding gene ENSSSCG00000042180. In addition, several candidate genes associated with litter traits were identified, including JARID2, PDIA6, FLRT2 and DICER1. Overall, these novel results reflect the polygenic genetic architecture of the litter traits and provide a theoretical reference for the following implementation of molecular breeding.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Second-generation PLINK: rising to the challenge of larger and richer datasets

          PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Haploview: analysis and visualization of LD and haplotype maps.

            Research over the last few years has revealed significant haplotype structure in the human genome. The characterization of these patterns, particularly in the context of medical genetic association studies, is becoming a routine research activity. Haploview is a software package that provides computation of linkage disequilibrium statistics and population haplotype patterns from primary genotype data in a visually appealing and interactive interface. http://www.broad.mit.edu/mpg/haploview/ jcbarret@broad.mit.edu
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dicer is essential for mouse development.

              To address the biological function of RNA interference (RNAi)-related pathways in mammals, we disrupted the gene Dicer1 in mice. Loss of Dicer1 lead to lethality early in development, with Dicer1-null embryos depleted of stem cells. Coupled with our inability to generate viable Dicer1-null embryonic stem (ES) cells, this suggests a role for Dicer, and, by implication, the RNAi machinery, in maintaining the stem cell population during early mouse development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Animals
                Animals
                MDPI AG
                2076-2615
                June 2022
                June 19 2022
                : 12
                : 12
                : 1584
                Article
                10.3390/ani12121584
                37f357db-2f01-4c2f-bd26-0caacfad6f2f
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article