3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differences in Pathological Composition Among Large Artery Occlusion Cerebral Thrombi, Valvular Heart Disease Atrial Thrombi and Carotid Endarterectomy Plaques

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Purpose: Acute ischemic stroke (AIS) with large artery occlusion (LAO) may lead to severe disability or death if not promptly treated. To determine the source of cerebral artery occlusion thrombosis, we studied the pathological components of cerebral artery thrombosis with different etiological classifications to guide clinical formulation of preventive treatment.

          Materials and Methods: Eighty-eight thrombi from AIS patients with LAO, 12 atrial thrombi from patients with valvular heart disease (VHD), and 11 plaques obtained by carotid endarterectomy (CEA) from patients with carotid artery stenosis were included in this retrospective study. The hematoxylin and eosin–stained specimens were quantitatively analyzed for erythrocytes, white blood cells (WBCs) and fibrin; platelets were shown by immunohistochemistry for CD31.

          Results: The thrombi of VHD showed the highest percentage of fibrin, followed by those of cardioembolism (CE) and stroke of undetermined etiology (SUE), and these values were higher than those of the other groups. Plaques obtained by CEA showed the highest erythrocyte number, followed by the large artery atherosclerosis (LAA) thrombi, and showed significantly noticeable differences between other stroke subtypes. The proportions of fibrin and erythrocytes in the thrombi of CE and SUE were most similar to those in the thrombi of VHD, and the LAA thrombi were the closest to those obtained by CEA. CE thrombi and CEA plaques had a higher percentage of WBCs than thrombi of other stroke thrombus subtypes and VHD.

          Conclusions: CE and most cryptogenic thrombi may originate from the heart, and the formation of carotid atherosclerotic plaques may be related to atherosclerotic cerebral embolism. Inflammation may be involved in their formation.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4.

          The release of histones from dying cells is associated with microvascular thrombosis and, because histones activate platelets, this could represent a possible pathogenic mechanism. In the present study, we assessed the influence of histones on the procoagulant potential of human platelets in platelet-rich plasma (PRP) and in purified systems. Histones dose-dependently enhanced thrombin generation in PRP in the absence of any trigger, as evaluated by calibrated automated thrombinography regardless of whether the contact phase was inhibited. Activation of coagulation required the presence of fully activatable platelets and was not ascribable to platelet tissue factor, whereas targeting polyphosphate with phosphatase reduced thrombin generation even when factor XII (FXII) was blocked or absent. In the presence of histones, purified polyphosphate was able to induce thrombin generation in plasma independently of FXII. In purified systems, histones induced platelet aggregation; P-selectin, phosphatidylserine, and FV/Va expression; and prothrombinase activity. Blocking platelet TLR2 and TLR4 with mAbs reduced the percentage of activated platelets and lowered the amount of thrombin generated in PRP. These data show that histone-activated platelets possess a procoagulant phenotype that drives plasma thrombin generation and suggest that TLR2 and TLR4 mediate the activation process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thrombosis: tangled up in NETs.

            The contributions by blood cells to pathological venous thrombosis were only recently appreciated. Both platelets and neutrophils are now recognized as crucial for thrombus initiation and progression. Here we review the most recent findings regarding the role of neutrophil extracellular traps (NETs) in thrombosis. We describe the biological process of NET formation (NETosis) and how the extracellular release of DNA and protein components of NETs, such as histones and serine proteases, contributes to coagulation and platelet aggregation. Animal models have unveiled conditions in which NETs form and their relation to thrombogenesis. Genetically engineered mice enable further elucidation of the pathways contributing to NETosis at the molecular level. Peptidylarginine deiminase 4, an enzyme that mediates chromatin decondensation, was identified to regulate both NETosis and pathological thrombosis. A growing body of evidence reveals that NETs also form in human thrombosis and that NET biomarkers in plasma reflect disease activity. The cell biology of NETosis is still being actively characterized and may provide novel insights for the design of specific inhibitory therapeutics. After a review of the relevant literature, we propose new ways to approach thrombolysis and suggest potential prophylactic and therapeutic agents for thrombosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation.

              Histones are basic proteins that contribute to cell injury and tissue damage when released into the extracellular space. They have been attributed a prothrombotic activity, because their injection into mice induces diffuse microvascular thrombosis. The protein C-thrombomodulin (TM) system is a fundamental regulator of coagulation, particularly in the microvasculature, and its activity can be differentially influenced by interaction with several cationic proteins. To evaluate the effect of histones on the protein C-TM system in a plasma thrombin generation assay and in purified systems. The effect of histones on plasma thrombin generation in the presence or absence of TM was analyzed by calibrated automated thrombinography. Protein C activation in purified systems was evaluated by chromogenic substrate cleavage. The binding of TM and protein C to histones was evaluated by solid-phase binding assay. Histones dose-dependently increased plasma thrombin generation in the presence of TM, independently of its chondroitin sulfate moiety. This effect was not caused by inhibition of activated protein C activity, but by the impairment of TM-mediated protein C activation. Histones were able to bind to both protein C and TM, but the carboxyglutamic acid domain of protein C was required for their effect. Histones H4 and H3 displayed the highest activity. Importantly, unlike heparin, DNA did not inhibit the potentiating effect of histones on thrombin generation. Histones enhance plasma thrombin generation by reducing TM-dependent protein C activation. This mechanism might contribute to microvascular thrombosis induced by histones in vivo at sites of organ failure or severe inflammation. © 2011 International Society on Thrombosis and Haemostasis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                07 August 2020
                2020
                : 11
                : 811
                Affiliations
                [1] 1Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University , Guangzhou, China
                [2] 2Department of Pathology, The First Affiliated Hospital, Jinan University , Guangzhou, China
                [3] 3Department of Neurology, Beijiao Hospital , Foshan, China
                Author notes

                Edited by: David S. Liebeskind, University of California, Los Angeles, United States

                Reviewed by: Yang-Ha Hwang, Kyungpook National University, South Korea; Bernd Schmitz, University of Ulm, Germany

                *Correspondence: Hongyu Qiao inr_jnu@ 123456126.com

                This article was submitted to Endovascular and Interventional Neurology, a section of the journal Frontiers in Neurology

                †These authors share first authorship

                Article
                10.3389/fneur.2020.00811
                7427050
                32849244
                3840365b-32da-445a-9dc0-09575c459eaf
                Copyright © 2020 Liao, Guan, Liang, Shi, Liu, Zeng, Huang, Xie, Yuan, Qiao and Huang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 May 2020
                : 29 June 2020
                Page count
                Figures: 3, Tables: 3, Equations: 1, References: 45, Pages: 9, Words: 6034
                Categories
                Neurology
                Original Research

                Neurology
                stroke,mechanical thrombectomy,thrombus,red blood cells,white blood cells,fibrin,platelets
                Neurology
                stroke, mechanical thrombectomy, thrombus, red blood cells, white blood cells, fibrin, platelets

                Comments

                Comment on this article