4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sarcopenia Detection System Using RGB-D Camera and Ultrasound Probe: System Development and Preclinical In-Vitro Test

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sarcopenia is defined as muscle mass and strength loss with aging. As places, such as South Korea, Japan, and Europe have entered an aged society, sarcopenia is attracting global attention with elderly health. However, only few developed devices can quantify sarcopenia diagnosis modalities. Thus, the authors developed a sarcopenia detection system with 4 degrees of freedom to scan the human thigh with ultrasound probe and determine whether he/she has sarcopenia by inspecting the length of muscle thickness in the thigh by ultrasound image. To accurately measure the muscle thickness, the ultrasound probe attached to the sarcopenia detection system, must be moved angularly along the convex surface of the thigh with predefined pressure maintained. Therefore, the authors proposed an angular thigh scanning method for the aforementioned reason. The method first curve-fits the angular surface of the subject’s thigh with piecewise arcs using D information from a fixed RGB-D camera. Then, it incorporates a Jacobian-based ultrasound probe moving method to move the ultrasound probe along the curve-fitted arc and maintains radial interface force between the probe and the surface by force feedback control. The proposed method was validated by in-vitro test with a human thigh mimicked ham-gelatin phantom. The result showed the ham tissue thickness was maintained within approximately 26.01 ± 1.0 mm during 82 ° scanning with a 2.5 N radial force setting and the radial force between probe and surface of the phantom was maintained within 2.50 ± 0.1 N.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Estimation of skeletal muscle mass by bioelectrical impedance analysis.

          The purpose of this study was to develop and cross-validate predictive equations for estimating skeletal muscle (SM) mass using bioelectrical impedance analysis (BIA). Whole body SM mass, determined by magnetic resonance imaging, was compared with BIA measurements in a multiethnic sample of 388 men and women, aged 18-86 yr, at two different laboratories. Within each laboratory, equations for predicting SM mass from BIA measurements were derived using the data of the Caucasian subjects. These equations were then applied to the Caucasian subjects from the other laboratory to cross-validate the BIA method. Because the equations cross-validated (i.e., were not different), the data from both laboratories were pooled to generate the final regression equation SM mass (kg) = [(Ht 2 / R x 0.401) + (gender x 3.825) + (age x -0. 071)] + 5.102 where Ht is height in centimeters; R is BIA resistance in ohms; for gender, men = 1 and women = 0; and age is in years. The r(2) and SE of estimate of the regression equation were 0.86 and 2.7 kg (9%), respectively. The Caucasian-derived equation was applicable to Hispanics and African-Americans, but it underestimated SM mass in Asians. These results suggest that the BIA equation provides valid estimates of SM mass in healthy adults varying in age and adiposity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly.

            The increase of elderly in our society requires simple tools for quantification of sarcopenia in inpatient and outpatient settings. The aim of this study was to compare parameters determined with musculoskeletal ultrasound (M-US) with muscle strength in young and elderly patients. In this prospective, randomised and observer blind study, 26 young (24.2 ± 3.7 years) and 26 old (age 67.8 ± 4.8 years) patients were included. Muscle thickness, pennation angle and echogenicity of all muscles of musculus quadriceps were measured by M-US and correlated with isometric maximum voluntary contraction force (MVC) of musculus quadriceps. Reproducibility of M-US measurements as well as simple and multiple regression models were calculated. Of all measured M-US variables the highest reproducibility was found for measurements of thickness (intraclass correlation coefficients, 85-97%). Simple regression analysis showed a highly significant correlation of thickness measurements of all muscles of musculus quadriceps with MVC in the elderly and in the young. Multiple regression analysis revealed that thickness of musculus vastus medialis had the best correlation with MVC in the elderly. This study showed that measurement of muscle thickness, especially of musculus vastus medialis, by M-US is a reliable, bedside method for monitoring the extent of sarcopenia.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Towards 3D Point cloud based object maps for household environments

                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                09 August 2020
                August 2020
                : 20
                : 16
                : 4447
                Affiliations
                [1 ]Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; lethkim1@ 123456gmail.com (Y.-J.K.); tjdwns0318@ 123456gmail.com (S.K.)
                [2 ]Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
                Author notes
                [* ]Correspondence: fides@ 123456amc.seoul.kr
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-5872-3901
                https://orcid.org/0000-0002-6817-618X
                Article
                sensors-20-04447
                10.3390/s20164447
                7472485
                32784914
                384e12a0-b0c1-42d0-be42-c8428b52ff81
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 June 2020
                : 05 August 2020
                Categories
                Article

                Biomedical engineering
                sarcopenia detection,sarcopenia quantification,ultrasound scanning,jacobian,rgb-d camera,force sensor,in-vitro test,ham-gelatine phantom

                Comments

                Comment on this article