26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthesis, Crystal Structure, EXAFS, and Magnetic Properties of Catena [μ-Tris(1,2-bis(tetrazol-1-yl)propane-N1,N1‘)iron(II)] Bis(perchlorate). First Crystal Structure of an Iron(II) Spin-Crossover Chain Compound

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          [Fe(btzp)3](ClO4)2 (btzp = 1,2-bis(tetrazol-1-yl)propane) represents the first structurally characterized Fe(II) linear chain compound exhibiting thermal spin crossover. It shows a very gradual spin transition (T1/2 = 130 K) which has been followed by magnetic susceptibility measurements and 57Fe Mössbauer spectroscopy. The structure has been solved at 200 and 100 K by single-crystal X-ray analysis. It crystallizes in the trigonal space group P3c1 with Z = 2 Fe(II) units at both temperatures. The molecular structure consists of chains running along the c axis in which the Fe(II) ions are linked by three N4,N4' coordinating bis(tetrazole) ligands. The main difference between the two forms appears to be in the Fe-N bond lengths, which are 2.164(4) A at 200 K and 2.038(4) A at 100 K. The Fe-Fe separations are 7.422(1) A at 200 K and 7.273(1) A at 100 K. The EXAFS results are consistent with the crystal structure. In both spin states, the FeN6 octahedron is almost regular within the EXAFS resolution. The Fe-N distance is found as 2.16(2) A at 300 K and 2.00(2) A at 40 K. The absence of the "7 A peak" in the EXAFS spectra of [Fe(btzp)3](ClO4)2, in contrast with what has been observed for the [Fe(4-R-1,2,4-triazole)3]-(anion)2 chain compounds, confirms that this peak can be used as the signature of a metal alignment only when it involves a strongly enhanced multiple scattering M-M-M path, with M-M spacing less than 4 A. Irradiation with green light at 5 K has led to the population of the metastable high-spin state for the iron(II) ion. The nature of the spin-crossover behavior has been discussed on the basis of the structural features.

          Related collections

          Author and article information

          Journal
          Inorganic Chemistry
          Inorg. Chem.
          American Chemical Society (ACS)
          0020-1669
          1520-510X
          May 2000
          May 2000
          : 39
          : 9
          : 1891-1900
          Article
          10.1021/ic991118n
          11428109
          3891cd7a-8468-42df-b011-b8e53f0c67cd
          © 2000
          History

          Comments

          Comment on this article