10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Androgen Receptor-Dependent Mechanisms Mediating Drug Resistance in Prostate Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Prostate cancer can develop under hormone treatment and chemotherapy from a castration-sensitive towards a castration-resistant into a drug resistant-tumor. The main hormonal drug target is the androgen receptor (AR). Androgen deprivation therapy reduces body-own androgen production and AR antagonists inhibit androgen-mediated activation of AR. Here, molecular mechanisms are described that review knowledge about tumor cells escape therapy by developing bypass mechanisms of AR-signaling. This includes genomic and non-genomic signaling. Deciphering the involved molecules that mediate castration and drug resistance will provide the basis of potential novel drug targets that may be used in addition to AR inhibition as combinatory treatment.

          Abstract

          Androgen receptor (AR) is a main driver of prostate cancer (PCa) growth and progression as well as the key drug target. Appropriate PCa treatments differ depending on the stage of cancer at diagnosis. Although androgen deprivation therapy (ADT) of PCa is initially effective, eventually tumors develop resistance to the drug within 2–3 years of treatment onset leading to castration resistant PCa (CRPC). Castration resistance is usually mediated by reactivation of AR signaling. Eventually, PCa develops additional resistance towards treatment with AR antagonists that occur regularly, also mostly due to bypass mechanisms that activate AR signaling. This tumor evolution with selection upon therapy is presumably based on a high degree of tumor heterogenicity and plasticity that allows PCa cells to proliferate and develop adaptive signaling to the treatment and evolve pathways in therapy resistance, including resistance to chemotherapy. The therapy-resistant PCa phenotype is associated with more aggressiveness and increased metastatic ability. By far, drug resistance remains a major cause of PCa treatment failure and lethality. In this review, various acquired and intrinsic mechanisms that are AR‑dependent and contribute to PCa drug resistance will be discussed.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2021

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular determinants of resistance to antiandrogen therapy.

            Using microarray-based profiling of isogenic prostate cancer xenograft models, we found that a modest increase in androgen receptor mRNA was the only change consistently associated with the development of resistance to antiandrogen therapy. This increase in androgen receptor mRNA and protein was both necessary and sufficient to convert prostate cancer growth from a hormone-sensitive to a hormone-refractory stage, and was dependent on a functional ligand-binding domain. Androgen receptor antagonists showed agonistic activity in cells with increased androgen receptor levels; this antagonist-agonist conversion was associated with alterations in the recruitment of coactivators and corepressors to the promoters of androgen receptor target genes. Increased levels of androgen receptor confer resistance to antiandrogens by amplifying signal output from low levels of residual ligand, and by altering the normal response to antagonists. These findings provide insight toward the design of new antiandrogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth.

              Therapy for advanced prostate cancer centers on suppressing systemic androgens and blocking activation of the androgen receptor (AR). Despite anorchid serum androgen levels, nearly all patients develop castration-resistant disease. We hypothesized that ongoing steroidogenesis within prostate tumors and the maintenance of intratumoral androgens may contribute to castration-resistant growth. Using mass spectrometry and quantitative reverse transcription-PCR, we evaluated androgen levels and transcripts encoding steroidogenic enzymes in benign prostate tissue, untreated primary prostate cancer, metastases from patients with castration-resistant prostate cancer, and xenografts derived from castration-resistant metastases. Testosterone levels within metastases from anorchid men [0.74 ng/g; 95% confidence interval (95% CI), 0.59-0.89] were significantly higher than levels within primary prostate cancers from untreated eugonadal men (0.23 ng/g; 95% CI, 0.03-0.44; P < 0.0001). Compared with primary prostate tumors, castration-resistant metastases displayed alterations in genes encoding steroidogenic enzymes, including up-regulated expression of FASN, CYP17A1, HSD3B1, HSD17B3, CYP19A1, and UGT2B17 and down-regulated expression of SRD5A2 (P < 0.001 for all). Prostate cancer xenografts derived from castration-resistant tumors maintained similar intratumoral androgen levels when passaged in castrate compared with eugonadal animals. Metastatic prostate cancers from anorchid men express transcripts encoding androgen-synthesizing enzymes and maintain intratumoral androgens at concentrations capable of activating AR target genes and maintaining tumor cell survival. We conclude that intracrine steroidogenesis may permit tumors to circumvent low levels of circulating androgens. Maximal therapeutic efficacy in the treatment of castration-resistant prostate cancer will require novel agents capable of inhibiting intracrine steroidogenic pathways within the prostate tumor microenvironment.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                26 March 2021
                April 2021
                : 13
                : 7
                : 1534
                Affiliations
                Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany; m67.ehsani@ 123456gmail.com (M.E.); faith-oluwakemi.lena.david@ 123456uni-jena.de (F.O.D.)
                Author notes
                [* ]Correspondence: aria.baniahmad@ 123456med.uni-jena.de ; Tel.: +49-3641-9396820
                Author information
                https://orcid.org/0000-0003-1085-9161
                Article
                cancers-13-01534
                10.3390/cancers13071534
                8037957
                33810413
                38c58e8d-dc6b-4c05-aa52-035d261b4fb3
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 February 2021
                : 20 March 2021
                Categories
                Review

                androgen receptor,prostate cancer,ar antagonists,castration resistant pca,androgen deprivation therapy

                Comments

                Comment on this article