12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ring-spot virus resistance locus

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data

          The Environment for Tree Exploration (ETE) is a computational framework that simplifies the reconstruction, analysis, and visualization of phylogenetic trees and multiple sequence alignments. Here, we present ETE v3, featuring numerous improvements in the underlying library of methods, and providing a novel set of standalone tools to perform common tasks in comparative genomics and phylogenetics. The new features include (i) building gene-based and supermatrix-based phylogenies using a single command, (ii) testing and visualizing evolutionary models, (iii) calculating distances between trees of different size or including duplications, and (iv) providing seamless integration with the NCBI taxonomy database. ETE is freely available at http://etetoolkit.org
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons

            Background Transposable elements are abundant in eukaryotic genomes and it is believed that they have a significant impact on the evolution of gene and chromosome structure. While there are several completed eukaryotic genome projects, there are only few high quality genome wide annotations of transposable elements. Therefore, there is a considerable demand for computational identification of transposable elements. LTR retrotransposons, an important subclass of transposable elements, are well suited for computational identification, as they contain long terminal repeats (LTRs). Results We have developed a software tool LTRharvest for the de novo detection of full length LTR retrotransposons in large sequence sets. LTRharvest efficiently delivers high quality annotations based on known LTR transposon features like length, distance, and sequence motifs. A quality validation of LTRharvest against a gold standard annotation for Saccharomyces cerevisae and Drosophila melanogaster shows a sensitivity of up to 90% and 97% and specificity of 100% and 72%, respectively. This is comparable or slightly better than annotations for previous software tools. The main advantage of LTRharvest over previous tools is (a) its ability to efficiently handle large datasets from finished or unfinished genome projects, (b) its flexibility in incorporating known sequence features into the prediction, and (c) its availability as an open source software. Conclusion LTRharvest is an efficient software tool delivering high quality annotation of LTR retrotransposons. It can, for example, process the largest human chromosome in approx. 8 minutes on a Linux PC with 4 GB of memory. Its flexibility and small space and run-time requirements makes LTRharvest a very competitive candidate for future LTR retrotransposon annotation projects. Moreover, the structured design and implementation and the availability as open source provides an excellent base for incorporating novel concepts to further improve prediction of LTR retrotransposons.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              R/qtl: QTL mapping in experimental crosses

                Bookmark

                Author and article information

                Journal
                The Plant Journal
                Plant J
                Wiley-Blackwell
                09607412
                December 2017
                December 12 2017
                : 92
                : 5
                : 963-975
                Article
                10.1111/tpj.13722
                28940759
                38d4087f-7219-4814-bbfa-e7acf241d3c0
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article