22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In contrast to normal differentiated cells that depend on aerobicoxidation for energy production, cancer cells use aerobic glycolysis as the main source (Warburg's effect). The M2 splice isoform of pyruvate kinase (PKM2) is the key regulator for the aerobic glycolysis, high expression of PKM2 contributes to the aerobic glycolysis, promotes the growth of tumors. In the present study, we found that PKM2 was highly expressed in gastric cancer (GC) tissues and had a strongly inverse correlation with the expression of microRNA-let-7a (miR-let-7a). Furthermore, we found that the overexpression of miR-let-7a markedly suppressed the proliferation, migration, and invasion of GC cells by down-regulating the expression of PKM2. MicroRNAs (miRNAs) are important regulators play key roles in tumorigenesis and tumor progression. Although previous reports showed that let-7 family members act as tumor suppressors in many cancers. The specific regulatory mechanism of miR-let-7a to PKM2 in gastric cancer is still unclear. In this study, we revealed that miR-let-7a function as the antitumor and gene regulatory effects of PKM2 in GC cells.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Article: not found

          On the origin of cancer cells.

          O WARBURG (1956)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Lin28/let-7 axis regulates glucose metabolism.

            The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells.

              Cell proliferation only proceeds when metabolism is capable of providing a budget of metabolic intermediates that is adequate to ensure both energy regeneration and the synthesis of cell building blocks in sufficient amounts. In tumor cells, the glycolytic pyruvate kinase isoenzyme M2 (PKM2, M2-PK) determines whether glucose is converted to lactate for regeneration of energy (active tetrameric form, Warburg effect) or used for the synthesis of cell building blocks (nearly inactive dimeric form). This review discusses the regulation mechanisms of pyruvate kinase M2 expression by different transcription factors as well as the regulation of pyruvate kinase M2 activity by direct interaction with certain oncoproteins, tyrosine and serine phosphorylation, binding of phosphotyrosine peptides, association with other glycolytic and non glycolytic enzymes, the promyelocytic leukemia tumor suppressor protein, as well as metabolic intermediates. An intervention in the regulation mechanisms of the expression, activity and tetramer to dimer ratio of pyruvate kinase M2 has severe consequences for metabolism as well as proliferation and tumorigenic capacity of the cells which makes this enzyme a promising target for potential therapeutic approaches. The quantification of the dimeric form of pyruvate kinase M2 (Tumor M2-PK) in plasma and stool allows early detection of tumors and therapy control. Several different mechanisms may induce a translocation of pyruvate kinase M2 into the nucleus. The role of pyruvate kinase M2 in the nucleus is complex as witnessed by evidence of its effect both as pro-proliferative as well as pro-apoptotic stimuli. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                2 February 2016
                5 January 2016
                : 7
                : 5
                : 5972-5984
                Affiliations
                1 Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
                2 Liver Transplantation Center of the First Affiliated Hospital and Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Nanjing Medical University, Nanjing, China
                3 Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
                Author notes
                Correspondence to: Li Yang, pwkyangli@ 123456163.com
                Article
                6821
                10.18632/oncotarget.6821
                4868734
                26745603
                3909fcd9-ce0d-49fa-8910-0b164735d6bb
                Copyright: © 2016 Tang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 June 2015
                : 29 December 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                gastric cancer,microrna-let-7a,pkm2
                Oncology & Radiotherapy
                gastric cancer, microrna-let-7a, pkm2

                Comments

                Comment on this article