2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epidemiology and Multidrug Resistance of Pseudomonas aeruginosa and Acinetobacter baumanni Isolated from Clinical Samples in Ethiopia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A. baumannii and P. aeruginosa are important nosocomial pathogens in health-care settings. Both are intrinsically resistant to many drugs and are able to become resistant to the virtually most antimicrobial agents. An increasing prevalence of infections caused by multidrug-resistant isolates has been reported in many countries.

          Methods

          An institutional-based cross-sectional five-year retrospective study was conducted to assess the antimicrobial resistance trend of P. aeruginosa and A. baumani. 893 A. baumani and 729 P. aeruginosa isolates were included in the study. Conventional method was used for identification and antimicrobial susceptibility was determined by Kirby-Bauer disc-diffusion method. The isolates were from suspected bloodstream infections, wound infections, urinary tract, or surgical site nosocomial infections. Socio-demographic and other variables of interest were collected using a structured check list from a patient record data. Data were analyzed using SPSS version 26 software. P value <0.05 was considered statistically significant.

          Results

          A total of 1622 A. baumanii and P. aeruginosa were isolated from various clinical specimens recorded from the year 2017–2021. Out of which A. baumanni was 893 (60.6%) and P. aeruginosa was 729 (39.4%). Blood was the major source of the isolates (18.3%), followed by urine (16%), and tracheal aspirate (10.6%). Antimicrobial resistance among A. baumanni over the five years were; ampicillin (86% to 92%), ceftriaxone (66.7% to 82.2%), and ciprofloxacin (58.5% to 66.7%). In P. aeruginosa a significant increase in resistance was seen from 2017 to 2021 to Amoxicillin-clavulanate (74.1% to 84.2%), chloramphenicol (62% to 81.9%), and gentamicin (40% to 44.8%).

          Conclusion

          A five-year antimicrobial resistance trend analysis of A. baumanni and P. aeruginosa showed increasing multi drug resistance and resistance to highly potent antimicrobial agents in Ethiopia. It should be addressed with infection control measures, surveillance, and alternative new therapeutic strategies to circumvent the spread of multi-drug resistance.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Prevalence of Carbapenem-Resistant Gram-Negative Infections in the United States Predominated by Acinetobacter baumannii and Pseudomonas aeruginosa

          Abstract Background Carbapenem-resistant (CR) Gram-negative pathogens are recognized as a major health concern. This study examined the prevalence of infections due to 4 CR Gram-negative species (Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli) in the United States and assessed their impact on hospital stays and mortality. Methods Hospitalized patients with laboratory-confirmed infection due to any of the 4 Gram-negative pathogens were identified from the Premier Healthcare Database. Proportions of CR were calculated by pathogen and infection site (blood, respiratory, urinary, or other) for the United States as whole and by census regions. Crude and adjusted odds ratios for in-hospital mortality were produced using logistic regression. Results From 2009 to 2013, 13 262 (4.5%) of 292 742 infections due to these 4 Gram-negative pathogens were CR. Of these CR infections, 82.3% were caused by A. baumannii (22%) or P. aeruginosa (60.3%), while 17.7% were caused by K. pneumoniae or E. coli. CR patients had longer hospital stays than carbapenem-susceptible (CS) patients in all pathogen-infection site cohorts, except in the A. baumannii-respiratory cohort. The crude all cause in-hospital mortality was greater for most pathogen-infection site cohorts of the CR group compared with the CS group, especially for A. baumannii infection in the blood (crude odds ratio [OR], 3.91; 95% confidence interval [CI], 2.69–5.70). This difference for the A. baumannii-blood cohort remained after adjusting for the relevant covariates (adjusted OR, 2.46; 95% CI, 1.43–4.22). Conclusion The majority of CR infections and disease burden in the United States was caused by nonfermenters A. baumannii and P. aeruginosa. Patients with CR infections had longer hospital stays and higher crude in-hospital mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: a systematic review and meta-analysis

            ABSTRACT Due to therapeutic challenges, hospital-acquired infections (HAIs) caused by Acinetobacter baumannii (HA-AB), particularly carbapenem-resistant strains (HA-CRAB) pose a serious health threat to patients worldwide. This systematic review sought to summarize recent data on the incidence and prevalence of HA-AB and HA-CRAB infections in the WHO-defined regions of Europe (EUR), Eastern Mediterranean (EMR) and Africa (AFR). A comprehensive literature search was performed using MEDLINE, EMBASE and GMI databases (01/2014-02/2019). Random-effects meta-analyses were performed to determine the pooled incidence of HA-AB and HA-CRAB infections as well as the proportions of A. baumannii among all HAIs. 24 studies from 3,340 records were included in this review (EUR: 16, EMR: 6, AFR: 2). The pooled estimates of incidence and incidence density of HA-AB infection in intensive care units (ICUs) were 56.5 (95% CI 33.9-92.8) cases per 1,000 patients and 4.4 (95% CI 2.9-6.6) cases per 1,000 patient days, respectively. Five studies conducted at a hospital-wide level or in specialized clinical departments/wards (ICU + non-ICU patients) showed HA-AB incidences between 0.85 and 5.6 cases per 1,000 patients. For carbapenem-resistant A. baumannii infections in ICUs, the pooled incidence and incidence density were 41.7 (95% CI 21.6-78.7) cases per 1,000 patients and 2.1 (95% CI 1.2-3.7) cases per 1,000 patient days, respectively. In ICUs, A. baumannii and carbapenem-resistant A. baumannii strains accounted for 20.9% (95% CI 16.5-26.2%) and 13.6% (95% CI 9.7-18.7%) of all HAIs, respectively. Our study highlights the persistent clinical significance of hospital-acquired A. baumannii infections in the studied WHO regions, particularly in ICUs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antibiotic Resistance of Pseudomonas aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a 10-Year Period

              Background Pseudomonas aeruginosa is a common cause of community-acquired and nosocomial-acquired pneumonia. The development of resistance of P. aeruginosa to antibiotics is increasing globally due to the overuse of antibiotics. This article examines, retrospectively, the antibiotic resistance in patients with community-acquired versus nosocomial-acquired pneumonia caused by P. aeruginosa or multidrug-resistant (MDR) P. aeruginosa. Methods Data from patients with community-acquired and nosocomial-acquired pneumonia caused by P. aeruginosa and MDR P. aeruginosa were collected from the hospital charts at the HELIOS Clinic, Witten/Herdecke University, Wuppertal, Germany, between January 2004 and August 2014. An antibiogram was created from all study patients with community-acquired and nosocomial-acquired pneumonia caused by P. aeruginosa or MDR P. aeruginosa. Results A total of 168 patients with mean age 68.1 ± 12.8 (113 [67.3% males and 55 [32.7%] females) were identified; 91 (54.2%) had community-acquired and 77 (45.8%) had nosocomial-acquired pneumonia caused by P. aeruginosa. Patients with community-acquired versus nosocomial-acquired pneumonia had a mean age of 66.4 ± 13.8 vs. 70.1 ± 11.4 years [59 vs. 54 (64.8% vs. 70.1%) males and 32 vs. 23 (35.2% vs. 29.9%) females]. They included 41 (24.4%) patients with pneumonia due to MDR P. aeruginosa: 27 (65.9%) community-acquired and 14 (34.1%) nosocomial-acquired cases. P. aeruginosa and MDR P. aeruginosa showed a very high resistance to fosfomycin (community-acquired vs. nosocomial-acquired) (81.0% vs. 84.2%; 0 vs. 85.7%). A similar resistance pattern was seen with ciprofloxacin (35.2% vs. 24.0%; 70.4% vs. 61.5%), levofloxacin (34.6% vs. 24.5%; 66.7% vs. 64.3%), ceftazidime (15.9% vs. 30.9; 33.3% vs. 61.5%), piperacillin (24.2% vs. 29.9%; 44.4% vs. 57.1%), imipenem (28.6% vs. 27.3%; 55.6% vs. 50.0%), piperacillin and tazobactam (23.1% vs. 28.6%; 44.4% vs. 50.0%), tobramycin (28.0% vs. 17.2%; 52.0% vs. 27.3%), gentamicin (26.4% vs. 18.2%; 44.4% vs. 21.4%), and meropenem (20.2% vs. 20.3%; 42.3% vs. 50.0%). An elevated resistance of P. aeruginosa and MDR P. aeruginosa was found for cefepime (11.1% vs. 23.3%; 25.9% vs. 50.0%), and amikacin (10.2% vs. 9.1%; 27.3% vs. 9.1%). Neither pathogen was resistant to colistin (P = 0.574). Conclusion While P. aeruginosa and MDR P. aeruginosa were resistant to a variety of commonly used antibiotics, they were not resistant to colistin in the few isolates recovered from patients with pneumonia.
                Bookmark

                Author and article information

                Journal
                Infect Drug Resist
                Infect Drug Resist
                idr
                Infection and Drug Resistance
                Dove
                1178-6973
                08 May 2023
                2023
                : 16
                : 2765-2773
                Affiliations
                [1 ]Department of Medical Laboratory Science, College of Health Science Addis Ababa University Addis Ababa , Addis Ababa, 9086, Ethiopia
                [2 ]Department of Medical Microbiology, Parasitology and Immunology St. Paul Hospital Millennium Medical College , Addis Ababa, Ethiopia
                [3 ]Department of Medical Laboratory Science, St. Paul Hospital Millennium Medical College , Addis Ababa, Ethiopia
                Author notes
                Correspondence: Shambel Araya, Tel +251 939459529, Email shambelaraya8@gmail.com
                Author information
                http://orcid.org/0000-0002-0109-6062
                Article
                402894
                10.2147/IDR.S402894
                10178297
                37187480
                3967d698-f024-4ac0-a36b-6fbb7b723ce1
                © 2023 Araya et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 28 December 2022
                : 03 May 2023
                Page count
                Figures: 4, Tables: 2, References: 38, Pages: 9
                Categories
                Original Research

                Infectious disease & Microbiology
                a. baumanii,antibiotic resistance,ethiopia,mdr,p. aeruginosa
                Infectious disease & Microbiology
                a. baumanii, antibiotic resistance, ethiopia, mdr, p. aeruginosa

                Comments

                Comment on this article