9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin Nanoparticles Inhibiting Ferroptosis for the Enhanced Treatment of Intracerebral Hemorrhage

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Intracerebral hemorrhage (ICH) is a form of severe stroke, the pathology of which is tied closely to a recently discovered form of programmed cell death known as ferroptosis. Curcumin (Cur) is a common phenolic compound extracted from the rhizome of Curcuma longa capable of hematoma volume and associated neurological damage in the context of ICH. Despite exhibiting therapeutic promise, the efficacy of Cur is challenged by its poor water solubility, limited oral bioavailability and inability to efficiently transit across the physiological barriers. Polymer-based nanoparticles (NPs) have widely been employed to aid in drug delivery efforts owing to their ideal biocompatibility and their ability to improve the bioavailability and pharmacokinetics of specific drugs of interest.

          Methods

          In this study, we encapsulated Cur in NPs (Cur-NPs) and explored the effect of these Cur-NPs to enhance Cur delivery both in vitro and in vivo. Furthermore, we evaluated the anti-ferroptosis effect of Cur-NPs in ICH model mice and erastin-treated HT22 murine hippocampal cells.

          Results

          The resultant Cur-NPs were spherical and exhibited a particle size of 127.31±2.73 nm, a PDI of 0.21±0.01 and a zeta potential of −0.25±0.02 mV. When applied to Madin Darby canine kidney (MDCK) cells in vitro, these Cur-NPs were nonspecifically internalized via multiple endocytic pathways, with plasma membrane microcapsules and clathrin-mediated uptake being the dominant mechanisms. Within cells, these NPs accumulated in lysosomes, endoplasmic reticulum and mitochondria. Cur-NPs were capable of passing through physiological barriers in a zebrafish model system. When administrated to C57BL/6 mice, they significantly improved Cur delivery to the brain. Most notably, when administered to ICH model mice, Cur-NPs achieved superior therapeutic outcomes relative to other treatments. In a final series of experiments, these Cur-NPs were shown to suppress erastin-induced ferroptosis in HT22 murine hippocampal cells.

          Conclusion

          These Cur-NPs represent a promising means of improving Cur delivery to the brain and thereby better treating ICH.

          Graphical Abstract

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease

          Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipid Peroxidation-Dependent Cell Death Regulated by GPx4 and Ferroptosis.

              Glutathione peroxidase 4 (Phospholipid hydroperoxide glutathione peroxidase, PHGPx) can directly reduce phospholipid hydroperoxide. Depletion of GPx4 induces lipid peroxidation-dependent cell death in embryo, testis, brain, liver, heart, and photoreceptor cells of mice. Administration of vitamin E in tissue specific GPx4 KO mice restored tissue damage in testis, liver, and heart. These results indicate that suppression of phospholipid peroxidation is essential for cell survival in normal tissues in mice. Ferroptosis is an iron-dependent non-apoptotic cell death that can elicited by pharmacological inhibiting the cystine/glutamate antiporter, system Xc- (type I) or directly binding and loss of activity of GPx4 (Type II) in cancer cells with high level RAS-RAF-MEK pathway activity or p53 expression, but not in normal cells. Ferroptosis by Erastin (Type I) and RSL3 (RAS-selective lethal 3, Type II) treatment was suppressed by an iron chelator, vitamin E and Ferrostatin-1, antioxidant compound. GPx4 can regulate ferroptosis by suppression of phospholipid peroxidation in erastin and RSL3-induced ferroptosis. Recent works have identified several regulatory factors of erastin and RSL3-induced ferroptosis. In our established GPx4-deficient MEF cells, depletion of GPx4 induce iron and 15LOX-independent lipid peroxidation at 26 h and caspase-independent cell death at 72 h, whereas erastin and RSL3 treatment resulted in iron-dependent ferroptosis by 12 h. These results indicated the possibility that the mechanism of GPx4-depleted cell death might be different from that of ferroptosis induced by erastin and RSL3.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                14 December 2021
                2021
                : 16
                : 8049-8065
                Affiliations
                [1 ]Science and Technology Innovation Center, Guangzhou University of Chinese Medicine , Guangzhou, 510405, People’s Republic of China
                [2 ]The First Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou, 510405, People’s Republic of China
                [3 ]Laboratory Animal Center, Guangzhou University of Chinese Medicine , Guangzhou, 510405, People’s Republic of China
                [4 ]Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine , Guangzhou, 510405, People’s Republic of China
                [5 ]The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou, 510120, People’s Republic of China
                Author notes
                Correspondence: Tongkai Chen; Yousheng Mo Email chentongkai@gzucm.edu.cn; 378480308@qq.com
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0002-4347-0155
                http://orcid.org/0000-0001-7599-6015
                Article
                334965
                10.2147/IJN.S334965
                8685769
                34938072
                39cf617a-905d-4f2f-bad1-30e81f9970f2
                © 2021 Yang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 19 August 2021
                : 06 December 2021
                Page count
                Figures: 9, References: 47, Pages: 17
                Categories
                Original Research

                Molecular medicine
                intracerebral hemorrhage,nanoparticles,curcumin,brain delivery,blood-brain barrier,ferroptosis

                Comments

                Comment on this article