38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Additive Pressures of Elevated Sea Surface Temperatures and Herbicides on Symbiont-Bearing Foraminifera

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Elevated ocean temperatures and agrochemical pollution individually threaten inshore coral reefs, but these pressures are likely to occur simultaneously. Experiments were conducted to evaluate the combined effects of elevated temperature and the photosystem II (PSII) inhibiting herbicide diuron on several types of symbiotic algae (diatom, dinoflagellate or rhodophyte) of benthic foraminifera in hospite. Diuron was shown to evoke a direct effect on photosynthetic efficiency (reduced effective PSII quantum yield ΔF/ F′ m ), while elevated temperatures (>30°C, only 2°C above current average summer temperatures) were observed to impact photosynthesis more indirectly by causing reductions in maximum PSII quantum yield ( F v / F m ), interpreted as photodamage. Additionally, elevated temperatures were shown to cause bleaching through loss of chlorophyll a in foraminifera hosting either diatoms or dinoflagellates. A significant linear correlation was found between reduced F v / F m and loss of chlorophyll a. In most cases, symbionts within foraminifera proved more sensitive to thermal stress in the presence of diuron (≥1 µg L −1). The mixture toxicity model of Independent Action (IA) described the combined effects of temperature and diuron on the photosystem of species hosting diatoms or dinoflagellates convincingly and in agreement with probabilistic statistics, so a response additive joint action can be assumed. We thus demonstrate that improving water quality can improve resilience of symbiotic phototrophs to projected increases in ocean temperatures. As IA described the observed combined effects from elevated temperature and diuron stress it may therefore be employed for prediction of untested mixtures and for assessing the efficacy of management measures.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals.

          In a coral-algae symbiotic system, heat-dependent photoinhibition of photosystem II (PSII) leads to coral bleaching. When the reef-building coral Acropora digitifera was exposed to light, a moderate increase of temperature induced coral bleaching through photobleaching of algal pigments, but not through expulsion of symbiotic algae. Monitoring of PSII photoinhibition revealed that heat-dependent photoinhibition was ascribed to inhibition of the repair of photodamaged PSII, and heat susceptibility of the repair machinery varied among coral species. We conclude that the efficiency of the photosynthesis repair machinery determines the bleaching susceptibility of coral species under elevated seawater temperatures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters.

            Pollution of coastal regions of the Great Barrier Reef World Heritage Area (GBRWHA) is dominated by river discharge associated with agricultural development of the adjacent catchments. Runoff of sediment, nutrients and pesticides has sharply increased since European settlement. Since 1991 plumes from river discharge entering the GBRWHA have been mapped by aerial mapping of plume edges and concentrations of contaminants in plumes measured. Plume dispersion is governed primarily by wind speed and direction. Most plumes spread in a band up to 50 km from the coast. Particulate material discharged in the plumes is trapped within 10 km of the coast. Dissolved nutrients disperse much further and elevated nutrient concentrations are measurable at distances of hundreds of kilometres from river mouths. This differential transport of particulate versus dissolved nutrients is important for the potential effects of these materials and management of their generation on the Great Barrier Reef catchment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The expected effect of a combination of agents: the general solution.

              Interactions between agents (drugs, carcinogens, physiological stimuli, environmental pollutants, etc.) in producing their effects are of fundamental interest and practical importance in virtually every branch of biology and medicine. A combination of agents is said to show interaction when the magnitude of its effect is greater or smaller than expected, expectation being based on the dose-effect relations of the individual agents in the combination. The crux of the matter is to decide what is expected, and various rules have been proposed to this end (for example, that the expected effect is the sum of the effects of the individual constituents of the combination, or that it is the product of these effects, or that it may be calculated from the law of mass action). These rules are valid for combinations of agents with particular and rather restricted types of dose-effect relations, but they have no general validity. A general solution to this problem is given here, that enables the effects of non-interactive combinations to be calculated directly from the dose-effect relations of the individual agents (whether expressed algebraically or numerically), regardless of the particular types of dose-effect relations involved. This solution is based on the fact that, when an effect of particular magnitude is produced by a combination of n agents which do not interact to produce that effect, the point representing the combination in the n-dimensional space spanned by the dose-axes of the individual agents lies in the same (n-1)-dimensional hyperplane as those representing other combinations iso-effective with it and iso-effective amounts of the individual agents. Methods for calculating the effect of a non-interactive combination as the sum or product of the effects of its constituents, or from the law of mass action, each of which is correct in appropriate cases, may be deduced (without invoking mechanisms of action) by applying this general principle to particular types of dose-effect relations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                16 March 2012
                : 7
                : 3
                : e33900
                Affiliations
                [1 ]The University of Queensland, School of Biological Sciences, St. Lucia, Australia
                [2 ]Australian Institute of Marine Science, Townsville, Australia
                [3 ]The University of Queensland, National Research Centre for Environmental Toxicology, Coopers Plains, Australia
                [4 ]Helmholtz Centre for Environmental Research - UFZ, Dept. Bioanalytical Ecotoxicology, Leipzig, Germany
                University of Sydney, Australia
                Author notes

                Conceived and designed the experiments: JvD AN SU. Performed the experiments: JvD. Analyzed the data: JvD SU. Contributed reagents/materials/analysis tools: AN JM RA SU. Wrote the paper: JvD.

                Article
                PONE-D-12-00353
                10.1371/journal.pone.0033900
                3306314
                22439012
                39f18202-9177-4f86-9e91-b9593754da86
                van Dam et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 January 2012
                : 20 February 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Agriculture
                Agrochemicals
                Biology
                Biochemistry
                Plant Biochemistry
                Ecology
                Ecological Environments
                Marine Ecology
                Marine Biology
                Toxicology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article