29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) could interact synergistically because PSB solubilize sparingly available phosphorous compounds into orthophosphate that AMF can absorb and transport to the host plant. Little is known about the interactions between these two groups in terms of promoting Jerusalem artichoke, Helianthus tuberosus L., which is widely planted by farmers because of its high inulin content. Production depends mainly on synthetic fertilizers as source of plant nutrients. This study aimed to isolate and characterize PSB and investigate the effects of co-inoculation of AMF and PSB on plant performance and inulin accumulation. Isolate UDJA102x89-9, identified as Klebsiella variicola (KV), showed phosphate-solubilizing ability and produced high amounts of several organic acids in vitro and of indole-3-acetic acid (IAA). The experiment combined KV and two AMF species ( Glomus multisubtensum (GM) and Rhizophagus intraradices (RI)). Co-inoculation of KV with RI, in combination with rock phosphate, showed the largest increases in plant growth and tuber inulin content, compared both to an unfertilized and fertilized control. This result would reveal whether the phosphate solubilization and IAA property of the PSB in vitro played a significant role in changing plant growth and production, and the available P was subsequently taken up and transported to plant roots by AMF. The high combined effect may have the potential for use by farmers in the future as a biofertilizer for inulin production by Helianthus tuberosus L.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities.

          Plant growth promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. In search of efficient PGPR strains with multiple activities, a total of 72 bacterial isolates belonging to Azotobacter, fluorescent Pseudomonas, Mesorhizobium and Bacillus were isolated from different rhizospheric soil and plant root nodules in the vicinity of Aligarh. These test isolates were biochemically characterized. These isolates were screened in vitro for their plant growth promoting traits like production of indoleacetic acid (IAA), ammonia (NH(3)), hydrogen cyanide (HCN), siderophore, phosphate solubilization and antifungal activity. More than 80% of the isolates of Azotobacter, fluorescent Pseudomonas and Mesorhizobium ciceri produced IAA, whereas only 20% of Bacillus isolates was IAA producer. Solubilization of phosphate was commonly detected in the isolates of Bacillus (80%) followed by Azotobacter (74.47%), Pseudomonas (55.56%) and Mesorhizobium (16.67%). All test isolates could produce ammonia but none of the isolates hydrolyzed chitin. Siderophore production and antifungal activity of these isolates except Mesorhizobium were exhibited by 10-12.77% isolates. HCN production was more common trait of Pseudomonas (88.89%) and Bacillus (50%). On the basis of multiple plant growth promoting activities, eleven bacterial isolates (seven Azotobacter, three Pseudomonas and one Bacillus) were evaluated for their quantitative IAA production, and broad-spectrum (active against three test fungi) antifungal activity. Almost at all concentration of tryptophan (50-500 microg/ml), IAA production was highest in the Pseudomonas followed by Azotobacter and Bacillus isolates. Azotobacter isolates (AZT(3), AZT(13), AZT(23)), Pseudomonas (Ps(5)) and Bacillus (B(1)) showed broad-spectrum antifungal activity on Muller-Hinton medium against Aspergillus, one or more species of Fusarium and Rhizoctonia bataticola. Further evaluation of the isolates exhibiting multiple plant growth promoting (PGP) traits on soil-plant system is needed to uncover their efficacy as effective PGPR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation.

            Enriched phosphate-solubilizing bacteria (PSB) agent were acquired by domesticated cultivation, and inoculated into kitchen waste composting in different stages. The effect of different treatments on organic acids production, tricalcium phosphate (TCP) solubilization and their relationship with bacterial community were investigated during composting. Our results pointed out that inoculation affected pH, total acidity and the production of oxalic, lactic, citric, succinic, acetic and formic acids. We also found a strong advantage in the solubilization of TCP and phosphorus (P) availability for PSB inoculation especially in the cooling stage. Redundancy analysis and structural equation models demonstrated inoculation by different methods changed the correlation of the bacterial community composition with P fractions as well as organic acids, and strengthened the cooperative function related to P transformation among species during composting. Finally, we proposed a possible mechanism of P solubilization with enriched PSB inoculation, which was induced by bacterial community and organic acids production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of dietary flaxseed oil level on the growth performance and fatty acid composition of fingerlings of rainbow trout, Oncorhynchus mykiss

              This study evaluated the suitability of flaxseed oil as a source of supplemental dietary lipid for fingerlings of rainbow trout (Oncorhynchus mykiss). Triplicate groups of the 30 fingerlings held under identical culture conditions were fed twice daily by iso-nitrogenous, iso-calorific and iso-lipidic diets for 8 weeks. Experimental diets consisted of 30.2% protein, 18.6 kJ g-1 energy and 16.5% lipid from fish oil (FO), flaxseed oil (FxO) and 1:1 blends of the oils (FFxO). Moisture, ash, protein, final body weight, specific growth rate, weight gain, feed conversion ratio, survival and hepatosomatic index were not affected by treatments but the percent of lipids was significantly highest in fish fed the flaxseed oil diet (FxOD). The condition factors of fingerlings reared on FxOD and fish and flaxseed oils diet (FFxOD) were significantly lower than those fed the fish oil diet (FOD). Protein efficiency ratio (PER) was significantly higher than those fed the FOD and FFxOD. Whole body fatty acid compositions mirrored those of diet treatments. The highest amounts of highly unsaturated fatty acids (HUFAs) were detected in fish fed 100% FO, which was significantly different from other treatments. In all treatments polyunsaturated fatty acids/saturated fatty acids (PUFAs/SFAs) and n-6/n-3 ratios were higher than 0.45 and lower than 4, respectively. Present results indicate the fingerlings can be reared on diets in which FO has been replaced with FxO, with no significant effects on fish performance.
                Bookmark

                Author and article information

                Contributors
                bsopho@kku.ac.th
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 March 2020
                18 March 2020
                2020
                : 10
                : 4916
                Affiliations
                [1 ]ISNI 0000 0004 0470 0856, GRID grid.9786.0, Department of Microbiology, Faculty of Science, , Khon Kaen University, ; Khon Kaen, 40002 Thailand
                [2 ]ISNI 0000 0004 0470 0856, GRID grid.9786.0, Department of Agronomy, Faculty of Agriculture, , Khon Kaen University, ; Khon Kaen, 40002 Thailand
                [3 ]ISNI 0000 0001 0791 5666, GRID grid.4818.5, Soil Biology Group, , Wageningen University & Research, ; P.O. Box 47, 6700 AA Wageningen, The Netherlands
                Author information
                http://orcid.org/0000-0002-3896-4943
                Article
                61846
                10.1038/s41598-020-61846-x
                7080738
                32188930
                3aab6285-8af8-4aea-8db7-8cd958a7b3e5
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 December 2019
                : 3 March 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100004396, Thailand Research Fund (TRF);
                Award ID: PHD/0123/2558
                Award Recipient :
                Funded by: TRF for also providing financial support through the Senior Research Scholar Project of Prof. Dr. Sanun Jogloy (Project No. RTA6180002). Khon Kaen University fund (No. 562201, 571001 580501, 590701, 602303 and 61003603)
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                applied microbiology,soil microbiology
                Uncategorized
                applied microbiology, soil microbiology

                Comments

                Comment on this article