11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trueness of 12 intraoral scanners in the full-arch implant impression: a comparative in vitro study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The literature has not yet validated the use of intraoral scanners (IOSs) for full-arch (FA) implant impression. Hence, the aim of this in vitro study was to assess and compare the trueness of 12 different IOSs in FA implant impression.

          Methods

          A stone-cast model of a totally edentulous maxilla with 6 implant analogues and scanbodies (SBs) was scanned with a desktop scanner (Freedom UHD®) to capture a reference model (RM), and with 12 IOSs (ITERO ELEMENTS 5D®; PRIMESCAN® and OMNICAM®; CS 3700® and CS 3600®; TRIOS3®; i-500®; EMERALD S® and EMERALD®; VIRTUO VIVO® and DWIO®; RUNEYES QUICKSCAN®). Ten scans were taken using each IOS, and each was compared to the RM, to evaluate trueness. A mesh/mesh method and a nurbs/nurbs method were used to evaluate the overall trueness of the scans; linear and cross distances between the SBs were used to evaluate the local trueness of the scans. The analysis was performed using reverse engineering software (Studio®, Geomagics; Magics®, Materialise). A statistical evaluation was performed.

          Results

          With the mesh/mesh method, the best results were obtained by CS 3700® (mean error 30.4 μm) followed by ITERO ELEMENTS 5D® (31.4 μm), i-500® (32.2 μm), TRIOS 3® (36.4 μm), CS 3600® (36.5 μm), PRIMESCAN® (38.4 μm), VIRTUO VIVO® (43.8 μm), RUNEYES® (44.4 μm), EMERALD S® (52.9 μm), EMERALD® (76.1 μm), OMNICAM® (79.6 μm) and DWIO® (98.4 μm). With the nurbs/nurbs method, the best results were obtained by ITERO ELEMENTS 5D® (mean error 16.1 μm), followed by PRIMESCAN® (19.3 μm), TRIOS 3® (20.2 μm), i-500® (20.8 μm), CS 3700® (21.9 μm), CS 3600® (24.4 μm), VIRTUO VIVO® (32.0 μm), RUNEYES® (33.9 μm), EMERALD S® (36.8 μm), OMNICAM® (47.0 μm), EMERALD® (51.9 μm) and DWIO® (69.9 μm). Statistically significant differences were found between the IOSs. Linear and cross distances between the SBs (local trueness analysis) confirmed the data that emerged from the overall trueness evaluation.

          Conclusions

          Different levels of trueness were found among the IOSs evaluated in this study. Further studies are needed to confirm these results.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Intraoral scanners in dentistry: a review of the current literature

          Background Intraoral scanners (IOS) are devices for capturing direct optical impressions in dentistry. The purpose of this narrative review on the use of IOS was to: (1) identify the advantages/disadvantages of using optical impressions compared to conventional impressions; (2) investigate if optical impressions are as accurate as conventional impressions; (3) evaluate the differences between the IOS currently available commercially; (4) determine the current clinical applications/limitations in the use of IOS. Methods Electronic database searches were performed using specific keywords and MeSH terms. The searches were confined to full-text articles written in English and published in peer-reviewed journals between January 2007 and June 2017. Results One hundred thirty-two studies were included in the present review; among them, 20 were previous literature reviews, 78 were in vivo clinical studies (6 randomized controlled/crossover trials, 31 controlled/comparative studies; 24 cohort studies/case series; 17 case reports) and 34 were in vitro comparative studies. Conclusions Optical impressions reduce patient discomfort; IOS are time-efficient and simplify clinical procedures for the dentist, eliminating plaster models and allowing better communication with the dental technician and with patients; however, with IOS, it can be difficult to detect deep margin lines in prepared teeth and/or in case of bleeding, there is a learning curve, and there are purchasing and managing costs. The current IOS are sufficiently accurate for capturing impressions for fabricating a whole series of prosthetic restorations (inlays/onlays, copings and frameworks, single crowns and fixed partial dentures) on both natural teeth and implants; in addition, they can be used for smile design, and to fabricate posts and cores, removable partial prostheses and obturators. The literature to date does not support the use of IOS in long-span restorations with natural teeth or implants. Finally, IOS can be integrated in implant dentistry for guided surgery and in orthodontics for fabricating aligners and custom-made devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions.

            Digital impression systems have undergone significant development in recent years, but few studies have investigated the accuracy of the technique in vivo, particularly compared with conventional impression techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The complete digital workflow in fixed prosthodontics: a systematic review

              Background The continuous development in dental processing ensures new opportunities in the field of fixed prosthodontics in a complete virtual environment without any physical model situations. The aim was to compare fully digitalized workflows to conventional and/or mixed analog-digital workflows for the treatment with tooth-borne or implant-supported fixed reconstructions. Methods A PICO strategy was executed using an electronic (MEDLINE, EMBASE, Google Scholar) plus manual search up to 2016–09-16 focusing on RCTs investigating complete digital workflows in fixed prosthodontics with regard to economics or esthetics or patient-centered outcomes with or without follow-up or survival/success rate analysis as well as complication assessment of at least 1 year under function. The search strategy was assembled from MeSH-Terms and unspecific free-text words: {((“Dental Prosthesis” [MeSH]) OR (“Crowns” [MeSH]) OR (“Dental Prosthesis, Implant-Supported” [MeSH])) OR ((crown) OR (fixed dental prosthesis) OR (fixed reconstruction) OR (dental bridge) OR (implant crown) OR (implant prosthesis) OR (implant restoration) OR (implant reconstruction))} AND {(“Computer-Aided Design” [MeSH]) OR ((digital workflow) OR (digital technology) OR (computerized dentistry) OR (intraoral scan) OR (digital impression) OR (scanbody) OR (virtual design) OR (digital design) OR (cad/cam) OR (rapid prototyping) OR (monolithic) OR (full-contour))} AND {(“Dental Technology” [MeSH) OR ((conventional workflow) OR (lost-wax-technique) OR (porcelain-fused-to-metal) OR (PFM) OR (implant impression) OR (hand-layering) OR (veneering) OR (framework))} AND {((“Study, Feasibility” [MeSH]) OR (“Survival” [MeSH]) OR (“Success” [MeSH]) OR (“Economics” [MeSH]) OR (“Costs, Cost Analysis” [MeSH]) OR (“Esthetics, Dental” [MeSH]) OR (“Patient Satisfaction” [MeSH])) OR ((feasibility) OR (efficiency) OR (patient-centered outcome))}. Assessment of risk of bias in selected studies was done at a ‘trial level’ including random sequence generation, allocation concealment, blinding, completeness of outcome data, selective reporting, and other bias using the Cochrane Collaboration tool. A judgment of risk of bias was assigned if one or more key domains had a high or unclear risk of bias. An official registration of the systematic review was not performed. Results The systematic search identified 67 titles, 32 abstracts thereof were screened, and subsequently, three full-texts included for data extraction. Analysed RCTs were heterogeneous without follow-up. One study demonstrated that fully digitally produced dental crowns revealed the feasibility of the process itself; however, the marginal precision was lower for lithium disilicate (LS2) restorations (113.8 μm) compared to conventional metal-ceramic (92.4 μm) and zirconium dioxide (ZrO2) crowns (68.5 μm) (p < 0.05). Another study showed that leucite-reinforced glass ceramic crowns were esthetically favoured by the patients (8/2 crowns) and clinicians (7/3 crowns) (p < 0.05). The third study investigated implant crowns. The complete digital workflow was more than twofold faster (75.3 min) in comparison to the mixed analog-digital workflow (156.6 min) (p < 0.05). No RCTs could be found investigating multi-unit fixed dental prostheses (FDP). Conclusions The number of RCTs testing complete digital workflows in fixed prosthodontics is low. Scientifically proven recommendations for clinical routine cannot be given at this time. Research with high-quality trials seems to be slower than the industrial progress of available digital applications. Future research with well-designed RCTs including follow-up observation is compellingly necessary in the field of complete digital processing. Electronic supplementary material The online version of this article (10.1186/s12903-017-0415-0) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                francescomangano1@mclink.net
                admakin1966@mail.ru
                bonacina13@gmail.com
                h-lerner@web.de
                vygandasr@gmail.com
                camangan@gmail.com
                Journal
                BMC Oral Health
                BMC Oral Health
                BMC Oral Health
                BioMed Central (London )
                1472-6831
                22 September 2020
                22 September 2020
                2020
                : 20
                : 263
                Affiliations
                [1 ]GRID grid.448878.f, ISNI 0000 0001 2288 8774, Department of Prevention and Communal Dentistry, , Sechenov First State Medical University, ; 119992 Moscow, Russia
                [2 ]Ars and Technology, Sotto il Monte Giovanni XXIII, 24039 Bergamo, Italy
                [3 ]GRID grid.7839.5, ISNI 0000 0004 1936 9721, Academic Teaching and Research Institution of Johann Wolfgang Goethe University, ; 60323 Frankfurt am Main, Germany
                [4 ]GRID grid.6441.7, ISNI 0000 0001 2243 2806, Department of Prosthodontics, Institute of Odontology, Faculty of Medicine, , Vilnius University, ; LT-01513 Vilnius, Lithuania
                [5 ]Department of Dental Sciences, Vita and Salute University San Raffaele, 20132 Milan, Italy
                Author information
                http://orcid.org/0000-0001-5488-4268
                Article
                1254
                10.1186/s12903-020-01254-9
                7509929
                32962680
                3ab39786-f549-4671-8c1a-20ad250cf70c
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 5 August 2020
                : 15 September 2020
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Dentistry
                intraoral scanner,full-arch implant impression,scanbody,trueness,comparative study
                Dentistry
                intraoral scanner, full-arch implant impression, scanbody, trueness, comparative study

                Comments

                Comment on this article