9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Quantifying the process and abruptness of the end-Permian mass extinction

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies of the end-Permian mass extinction have suggested a variety of patterns from a single catastrophic event to multiple phases. But most of these analyses have been based on fossil distributions from single localities. Although single sections may simplify the interpretation of species diversity, they are susceptible to bias from stratigraphic incompleteness and facies control of preservation. Here we use a data set of 1450 species from 18 fossiliferous sections in different paleoenvironmental settings across South China and the northern peri-Gondwanan region, and integrate it with high-precision geochronologic data to evaluate the rapidity of the largest Phanerozoic mass extinction. To reduce the Signor-Lipps effect, we applied constrained optimization (CONOP) to search for an optimal sequence of first and last occurrence datums for all species and generate a composite biodiversity pattern based on multiple sections. This analysis indicates that an abrupt extinction of 62% of species took place within 200 Kyr. The onset of the sudden extinction is around 252.3 Ma, just below Bed 25 at the Meishan section. Taxon turnover and diversification rates suggest a deterioration of the living conditions nearly 1.2 Myr before the sudden extinction. The magnitude of the extinction was such that there was no immediate biotic recovery. Prior suggestions of highly variable, multi-phased extinction patterns reflect the impact of the Signor-Lipps effect and facies-dependent occurrences, and are not supported following appropriate statistical treatment of this larger data set.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: not found
          • Book: not found

          The operated Markov´s chains in economy (discrete chains of Markov with the income)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mass extinctions in the marine fossil record.

            A new compilation of fossil data on invertebrate and vertebrate families indicates that four mass extinctions in the marine realm are statistically distinct from background extinction levels. These four occurred late in the Ordovician, Permian, Triassic, and Cretaceous periods. A fifth extinction event in the Devonian stands out from the background but is not statistically significant in these data. Background extinction rates appear to have declined since Cambrian time, which is consistent with the prediction that optimization of fitness should increase through evolutionary time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phanerozoic trends in the global diversity of marine invertebrates.

              It has previously been thought that there was a steep Cretaceous and Cenozoic radiation of marine invertebrates. This pattern can be replicated with a new data set of fossil occurrences representing 3.5 million specimens, but only when older analytical protocols are used. Moreover, analyses that employ sampling standardization and more robust counting methods show a modest rise in diversity with no clear trend after the mid-Cretaceous. Globally, locally, and at both high and low latitudes, diversity was less than twice as high in the Neogene as in the mid-Paleozoic. The ratio of global to local richness has changed little, and a latitudinal diversity gradient was present in the early Paleozoic.
                Bookmark

                Author and article information

                Journal
                Paleobiology
                Paleobiology
                Paleontological Society
                0094-8373
                1938-5331
                2014
                April 08 2016
                2014
                : 40
                : 1
                : 113-129
                Article
                10.1666/13022
                3ac3f500-1624-4cc6-9276-2d0a6566691f
                © 2014

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article

                scite_

                Similar content103

                Cited by27

                Most referenced authors594