273
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bleomycin and IL-1β–mediated pulmonary fibrosis is IL-17A dependent

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Idiopathic pulmonary fibrosis (IPF) is a destructive inflammatory disease with limited therapeutic options. To better understand the inflammatory responses that precede and concur with collagen deposition, we used three models of pulmonary fibrosis and identify a critical mechanistic role for IL-17A. After exposure to bleomycin (BLM), but not Schistosoma mansoni eggs, IL-17A produced by CD4 + and γδ + T cells induced significant neutrophilia and pulmonary fibrosis. Studies conducted with C57BL/6 il17a −/− mice confirmed an essential role for IL-17A. Mechanistically, using ifnγ −/− , il10 −/− , il10 −/−il12p40 −/− , and il10 −/−il17a −/− mice and TGF-β blockade, we demonstrate that IL-17A–driven fibrosis is suppressed by IL-10 and facilitated by IFN-γ and IL-12/23p40. BLM-induced IL-17A production was also TGF-β dependent, and recombinant IL-17A–mediated fibrosis required TGF-β, suggesting cooperative roles for IL-17A and TGF-β in the development of fibrosis. Finally, we show that fibrosis induced by IL-1β, which mimics BLM-induced fibrosis, is also highly dependent on IL-17A. IL-17A and IL-1β were also increased in the bronchoalveolar lavage fluid of patients with IPF. Together, these studies identify a critical role for IL-17A in fibrosis, illustrating the potential utility of targeting IL-17A in the treatment of drug and inflammation-induced fibrosis.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.

          We describe de novo generation of IL-17-producing T cells from naive CD4 T cells, induced in cocultures of naive CD4 T cells and naturally occurring CD4+ CD25+ T cells (Treg) in the presence of TLR3, TLR4, or TLR9 stimuli. Treg can be substituted by TGFbeta1, which, together with the proinflammatory cytokine IL-6, supports the differentiation of IL-17-producing T cells, a process that is amplified by IL-1beta and TNFalpha. We could not detect a role for IL-23 in the differentiation of IL-17-producing T cells but confirmed its importance for their survival and expansion. Transcription factors GATA-3 and T-bet, as well as its target Hlx, are absent in IL-17-producing T cells, and they do not express the negative regulator for TGFbeta signaling, Smad7. Our data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation of IL-17-producing T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses.

            Interleukin-17A (IL-17A) is a cytokine produced by T helper 17 (Th17) cells and plays important roles in the development of inflammatory diseases. Although IL-17F is highly homologous to IL-17A and binds the same receptor, the functional roles of this molecule remain largely unknown. Here, we demonstrated with Il17a(-/-), Il17f(-/-), and Il17a(-/-)Il17f(-/-) mice that IL-17F played only marginal roles, if at all, in the development of delayed-type and contact hypersensitivities, autoimmune encephalomyelitis, collagen-induced arthritis, and arthritis in Il1rn(-/-) mice. In contrast, both IL-17F and IL-17A were involved in host defense against mucoepithelial infection by Staphylococcus aureus and Citrobacter rodentium. IL-17A was produced mainly in T cells, whereas IL-17F was produced in T cells, innate immune cells, and epithelial cells. Although only IL-17A efficiently induced cytokines in macrophages, both cytokines activated epithelial innate immune responses. These observations indicate that IL-17A and IL-17F have overlapping yet distinct roles in host immune and defense mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pulmonary fibrosis: pathogenesis, etiology and regulation

              Pulmonary fibrosis and architectural remodeling of tissues can severely disrupt lung function, often with fatal consequences. The etiology of pulmonary fibrotic diseases is varied, with an array of triggers including allergens, chemicals, radiation and environmental particles. However, the cause of one of the most common pulmonary fibrotic conditions, idiopathic pulmonary fibrosis (IPF), is still unclear. This review examines common mechanisms of pulmonary wound-healing responses following lung injury, and highlights the pathogenesis of some of the most widespread pulmonary fibrotic diseases. A three phase model of wound repair is reviewed that includes; (1) injury; (2) inflammation; and (3) repair. In most pulmonary fibrotic conditions dysregulation at one or more of these phases has been reported. Chronic inflammation can lead to an imbalance in the production of chemokines, cytokines, growth factors, and disrupt cellular recruitment. These changes coupled with excessive pro-fibrotic IL-13 and/or TGFβ1 production can turn a well-controlled healing response into a pathogenic fibrotic response. Endogenous regulatory mechanisms are discussed including novel areas of therapeutic intervention. Restoring homeostasis to these dysregulated healing responses, or simply neutralizing the key pro-fibrotic mediators may prevent or slow the progression of pulmonary fibrosis.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                15 March 2010
                : 207
                : 3
                : 535-552
                Affiliations
                [1 ]Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases , and [2 ]National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
                [3 ]Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
                [4 ]Biomedical Research Institute, Rockville, MD 20852
                Author notes
                CORRESPONDENCE Thomas A. Wynn: twynn@ 123456niaid.nih.gov
                Article
                20092121
                10.1084/jem.20092121
                2839145
                20176803
                3aecf567-5685-4acc-b18f-97c8c53880d0
                © 2010 The Rockefeller University Press

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 30 September 2009
                : 1 February 2010
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article