58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: The pleiotropic effects of folate supplementation

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Homocysteine has emerged as a novel independent marker of risk for the development of cardiovascular disease over the past three decades. Additionally, there is a graded mortality risk associated with an elevated fasting plasma total homocysteine (tHcy). Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) are now considered to be a strong coronary heart disease (CHD) risk enhancer and a CHD risk equivalent respectively. Hyperhomocysteinemia (HHcy) in patients with MS and T2DM would be expected to share a similar prevalence to the general population of five to seven percent and of even greater importance is: Declining glomerular filtration and overt diabetic nephropathy is a major determinant of tHcy elevation in MS and T2DM.

          There are multiple metabolic toxicities resulting in an excess of reactive oxygen species associated with MS, T2DM, and the accelerated atherosclerosis (atheroscleropathy). HHcy is associated with an increased risk of cardiovascular disease, and its individual role and how it interacts with the other multiple toxicities are presented.

          The water-soluble B vitamins (especially folate and cobalamin-vitamin B 12) have been shown to lower HHcy. The absence of the cystathionine beta synthase enzyme in human vascular cells contributes to the importance of a dual role of folic acid in lowering tHcy through remethylation, as well as, its action of being an electron and hydrogen donor to the essential cofactor tetrahydrobiopterin. This folate shuttle facilitates the important recoupling of the uncoupled endothelial nitric oxide synthase enzyme reaction and may restore the synthesis of the omnipotent endothelial nitric oxide to the vasculature.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly.

          Nitric oxide contrasts with most intercellular messengers because it diffuses rapidly and isotropically through most tissues with little reaction but cannot be transported through the vasculature due to rapid destruction by oxyhemoglobin. The rapid diffusion of nitric oxide between cells allows it to locally integrate the responses of blood vessels to turbulence, modulate synaptic plasticity in neurons, and control the oscillatory behavior of neuronal networks. Nitric oxide is not necessarily short lived and is intrinsically no more reactive than oxygen. The reactivity of nitric oxide per se has been greatly overestimated in vitro because no drain is provided to remove nitric oxide. Nitric oxide persists in solution for several minutes in micromolar concentrations before it reacts with oxygen to form much stronger oxidants like nitrogen dioxide. Nitric oxide is removed within seconds in vivo by diffusion over 100 microns through tissues to enter red blood cells and react with oxyhemoglobin. The direct toxicity of nitric oxide is modest but is greatly enhanced by reacting with superoxide to form peroxynitrite (ONOO-). Nitric oxide is the only biological molecule produced in high enough concentrations to out-compete superoxide dismutase for superoxide. Peroxynitrite reacts relatively slowly with most biological molecules, making peroxynitrite a selective oxidant. Peroxynitrite modifies tyrosine in proteins to create nitrotyrosines, leaving a footprint detectable in vivo. Nitration of structural proteins, including neurofilaments and actin, can disrupt filament assembly with major pathological consequences. Antibodies to nitrotyrosine have revealed nitration in human atherosclerosis, myocardial ischemia, septic and distressed lung, inflammatory bowel disease, and amyotrophic lateral sclerosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.

            Superoxide dismutase reduces injury in many disease processes, implicating superoxide anion radical (O2-.) as a toxic species in vivo. A critical target of superoxide may be nitric oxide (NO.) produced by endothelium, macrophages, neutrophils, and brain synaptosomes. Superoxide and NO. are known to rapidly react to form the stable peroxynitrite anion (ONOO-). We have shown that peroxynitrite has a pKa of 7.49 +/- 0.06 at 37 degrees C and rapidly decomposes once protonated with a half-life of 1.9 sec at pH 7.4. Peroxynitrite decomposition generates a strong oxidant with reactivity similar to hydroxyl radical, as assessed by the oxidation of deoxyribose or dimethyl sulfoxide. Product yields indicative of hydroxyl radical were 5.1 +/- 0.1% and 24.3 +/- 1.0%, respectively, of added peroxynitrite. Product formation was not affected by the metal chelator diethyltriaminepentaacetic acid, suggesting that iron was not required to catalyze oxidation. In contrast, desferrioxamine was a potent, competitive inhibitor of peroxynitrite-initiated oxidation because of a direct reaction between desferrioxamine and peroxynitrite rather than by iron chelation. We propose that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO. under pathological conditions by preventing the formation of peroxynitrite.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Peroxisome Proliferator-Activated Receptors: Nuclear Control of Metabolism

                Bookmark

                Author and article information

                Journal
                Nutr J
                Nutrition Journal
                BioMed Central (London )
                1475-2891
                2004
                10 May 2004
                : 3
                : 4
                Affiliations
                [1 ]Department of Family and Community Medicine University of Missouri Columbia, Missouri PO BOX 1140 Lk. Rd. 5-87 Camdenton, Missouri 65020 USA
                [2 ]Department of Physiology and Biophysics 500 South Preston Street University of Louisville Louisville, Kentucky 40292 USA
                Article
                1475-2891-3-4
                10.1186/1475-2891-3-4
                420478
                15134582
                3b166bce-49cc-40ce-bfab-c0d6f900bfc9
                Copyright © 2004 Hayden and Tyagi; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 5 February 2004
                : 10 May 2004
                Categories
                Review

                Nutrition & Dietetics
                atherosclerosis,enos,oxidative stress,folate shuttle,folic acid,eno,nitric oxide synthase,nitric oxide,bh4

                Comments

                Comment on this article