4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioenergetic modulation with the mitochondria uncouplers SR4 and niclosamide prevents proliferation and growth of treatment-naïve and vemurafenib-resistant melanomas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BRAF mutations are detected in >50% of all melanomas. These mutations impair the LKB1-AMPK signaling, an important metabolic pathway associated with cell growth, proliferation and survival. Melanoma patients with BRAF mutations are usually treated with BRAF inhibitors such as vemurafenib, but responses are short-lived as drug resistant tumors metabolically switch to mitochondrial oxidative phosphorylation (OXPHOS) to escape metabolic stress-induced BRAF inhibition. Additionally, a large subset of melanoma utilizes OXPHOS in their metabolism, which can confer de novo resistance to BRAF inhibitors. Therefore, uncoupling of OXPHOS to perturb energy homeostasis and to indirectly stimulate AMPK could be a novel treatment for melanoma and to overcome intrinsic and acquired resistance to BRAF inhibitors. Here, we investigated the effects of SR4 and niclosamide, two small molecule mitochondria uncouplers, on the growth and proliferation of treatment-naïve and vemurafenib-resistant melanomas in vitro and in vivo. SR4 and niclosamide inhibited melanoma proliferation irrespective of BRAF/NRAS status. Melanomas with greater OXPHOS phenotype (higher OCR/ECAR), with LKB1 mutation, or with acquired resistance to vemurafenib displayed greater sensitivity to both uncouplers. More importantly, SR4 and niclosamide inhibited tumor growth in both treatment-naïve and vemurafenib-resistant xenograft mice models. Mechanistic studies indicate both uncouplers induced energetic stress, modulated the AMPK-mTOR pathway, and promoted apoptosis without affecting MEK-ERK MAPK signaling. These results suggest that uncouplers such as SR4 and niclosamide may be useful as first line treatment against melanoma regardless of BRAF/NRAS status, and as an adjuvant therapy for patients failing MAPK inhibitors.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          LKB1 and AMP-activated protein kinase control of mTOR signalling and growth.

          R J Shaw (2009)
          The AMP-activated serine/threonine protein kinase (AMPK) is a sensor of cellular energy status found in all eukaryotes that is activated under conditions of low intracellular ATP following stresses such as nutrient deprivation or hypoxia. In the past 5 years, work from a large number of laboratories has revealed that one of the major downstream signalling pathways regulated by AMPK is the mammalian target-of-rapamycin [mammalian target of rapamycin (mTOR) pathway]. Interestingly, like AMPK, the mTOR serine/threonine kinase plays key roles not only in growth control and cell proliferation but also in metabolism. Recent work has revealed that across eukaryotes mTOR orthologues are found in two biochemically distinct complexes and only one of those complexes (mTORC1 in mammals) is acutely sensitive to rapamycin and regulated by nutrients and AMPK. Many details of the molecular mechanism by which AMPK inhibits mTORC1 signalling have also been decoded in the past 5 years. AMPK directly phosphorylates at least two proteins to induce rapid suppression of mTORC1 activity, the TSC2 tumour suppressor and the critical mTORC1 binding subunit raptor. Here we explore the molecular connections between AMPK and mTOR signalling pathways and examine the physiological processes in which AMPK regulation of mTOR is critical for growth or metabolic control. The functional conservation of AMPK and TOR in all eukaryotes, and the sequence conservation around the AMPK phosphorylation sites in raptor across all eukaryotes examined suggest that this represents a fundamental cell growth module connecting nutrient status to the cell growth machinery. These findings have broad implications for the control of cell growth by nutrients in a number of cellular and organismal contexts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BRAFV600E: implications for carcinogenesis and molecular therapy.

            The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is frequently mutated in human cancer. This pathway consists of a small GTP protein of the RAS family that is activated in response to extracellular signaling to recruit a member of the RAF kinase family to the cell membrane. Active RAF signals through MAP/ERK kinase to activate ERK and its downstream effectors to regulate a wide range of biological activities including cell differentiation, proliferation, senescence, and survival. Mutations in the v-raf murine sarcoma viral oncogenes homolog B1 (BRAF) isoform of the RAF kinase or KRAS isoform of the RAS protein are found as activating mutations in approximately 30% of all human cancers. The BRAF pathway has become a target of interest for molecular therapy, with promising results emerging from clinical trials. Here, the role of the most common BRAF mutation BRAF(V600E) in human carcinogenesis is investigated through a review of the literature, with specific focus on its role in melanoma, colorectal, and thyroid cancers and its potential as a therapeutic target. ©2011 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect.

              Metabolic rewiring is an established hallmark of cancer, but the details of this rewiring at a systems level are not well characterized. Here we acquire this insight in a melanoma cell line panel by tracking metabolic flux using isotopically labeled nutrients. Metabolic profiling and flux balance analysis were used to compare normal melanocytes to melanoma cell lines in both normoxic and hypoxic conditions. All melanoma cells exhibited the Warburg phenomenon; they used more glucose and produced more lactate than melanocytes. Other changes were observed in melanoma cells that are not described by the Warburg phenomenon. Hypoxic conditions increased fermentation of glucose to lactate in both melanocytes and melanoma cells (the Pasteur effect). However, metabolism was not strictly glycolytic, as the tricarboxylic acid (TCA) cycle was functional in all melanoma lines, even under hypoxia. Furthermore, glutamine was also a key nutrient providing a substantial anaplerotic contribution to the TCA cycle. In the WM35 melanoma line glutamine was metabolized in the "reverse" (reductive) direction in the TCA cycle, particularly under hypoxia. This reverse flux allowed the melanoma cells to synthesize fatty acids from glutamine while glucose was primarily converted to lactate. Altogether, this study, which is the first comprehensive comparative analysis of metabolism in melanoma cells, provides a foundation for targeting metabolism for therapeutic benefit in melanoma.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                11 December 2018
                11 December 2018
                : 9
                : 97
                : 36945-36965
                Affiliations
                1 Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
                2 Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
                Author notes
                Correspondence to: James L. Figarola, jfigarola@ 123456coh.org
                Article
                26421
                10.18632/oncotarget.26421
                6319337
                30651927
                3b8fc880-173b-4cd6-882e-a3808736d71e
                Copyright: © 2018 Figarola et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 August 2018
                : 16 November 2018
                Categories
                Research Paper

                Oncology & Radiotherapy
                braf,mapk,mitochondria,uncoupler,xenograft
                Oncology & Radiotherapy
                braf, mapk, mitochondria, uncoupler, xenograft

                Comments

                Comment on this article