26
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Predation is a fundamental ecological process, but within most microbial ecosystems the molecular mechanisms of predation remain poorly understood. We investigated transcriptome changes associated with the predation of Escherichia coli by the myxobacterium Myxococcus xanthus using mRNA sequencing. Exposure to pre-killed prey significantly altered expression of 1319 predator genes. However, the transcriptional response to living prey was minimal, with only 12 genes being significantly up-regulated. The genes most induced by prey presence ( kdpA and kdpB, members of the kdp regulon) were confirmed by reverse transcriptase quantitative PCR to be regulated by osmotic shock in M. xanthus, suggesting indirect sensing of prey. However, the prey showed extensive transcriptome changes when co-cultured with predator, with 40 % of its genes (1534) showing significant changes in expression. Bacteriolytic M. xanthus culture supernatant and secreted outer membrane vesicles (OMVs) also induced changes in expression of large numbers of prey genes (598 and 461, respectively). Five metabolic pathways were significantly enriched in prey genes up-regulated on exposure to OMVs, supernatant and/or predatory cells, including those for ribosome and lipopolysaccharide production, suggesting that the prey cell wall and protein production are primary targets of the predator’s attack. Our data suggest a model of the myxobacterial predatome (genes and proteins associated with predation) in which the predator constitutively produces secretions which disable its prey whilst simultaneously generating a signal that prey is present. That signal then triggers a regulated feeding response in the predator.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification

          Abstract Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding the production of such compounds. Since 2011, the ‘antibiotics and secondary metabolite analysis shell—antiSMASH’ has assisted researchers in efficiently performing this, both as a web server and a standalone tool. Here, we present the thoroughly updated antiSMASH version 4, which adds several novel features, including prediction of gene cluster boundaries using the ClusterFinder method or the newly integrated CASSIS algorithm, improved substrate specificity prediction for non-ribosomal peptide synthetase adenylation domains based on the new SANDPUMA algorithm, improved predictions for terpene and ribosomally synthesized and post-translationally modified peptides cluster products, reporting of sequence similarity to proteins encoded in experimentally characterized gene clusters on a per-protein basis and a domain-level alignment tool for comparative analysis of trans-AT polyketide synthase assembly line architectures. Additionally, several usability features have been updated and improved. Together, these improvements make antiSMASH up-to-date with the latest developments in natural product research and will further facilitate computational genome mining for the discovery of novel bioactive molecules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial predation: 75 years and counting!

            The first documented study on bacterial predation was carried out using myxobacteria three quarters of a century ago. Since then, many predatory strains, diverse hunting strategies, environmental consequences and potential applications have been reported by groups all over the world. Now we know that predatory bacteria are distributed in a wide variety of environments and that interactions between predatory and non-predatory populations seem to be the most important factor in bacterial selection and mortality in some ecosystems. Bacterial predation has now been proposed as an evolutionary driving force. The structure and diversity of the predatory bacterial community is beginning to be recognized as an important factor in biodiversity due to its potential role in controlling and modelling bacterial populations in the environment. In this paper, we review the current understanding of bacterial predation, going over the strategies used by the main predatory bacteria to kill their prey. We have also reviewed and integrated the accumulated advances of the last 75 years with the interesting new insights that are provided by the analyses of genomes, predatomes, predatosomes and other comparative genomics studies, focusing on potential applications that derive from all of these areas of study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deciphering the hunting strategy of a bacterial wolfpack.

              Myxococcus xanthus is a common soil bacterium with an intricate multicellular lifestyle that continues to challenge the way in which we conceptualize the capabilities of prokaryotic organisms. Myxococcus xanthus is the preferred laboratory representative from the Myxobacteria, a family of organisms distinguished by their ability to form highly structured biofilms that include tentacle-like packs of surface-gliding cell groups, synchronized rippling waves of oscillating cells and massive spore-filled aggregates that protrude upwards from the substratum to form fruiting bodies. But most of the Myxobacteria are also predators that thrive on the degradation of macromolecules released through the lysis of other microbial cells. The aim of this review is to examine our understanding of the predatory life cycle of M. xanthus. We will examine the multicellular structures formed during contact with prey, and the molecular mechanisms utilized by M. xanthus to detect and destroy prey cells. We will also examine our understanding of microbial predator-prey relationships and the prospects for how bacterial predation mechanisms can be exploited to generate new antimicrobial technologies.
                Bookmark

                Author and article information

                Journal
                Microb Genom
                Microb Genom
                MGen
                Microbial Genomics
                Microbiology Society
                2057-5858
                February 2018
                18 January 2018
                18 January 2018
                : 4
                : 2
                : e000152
                Affiliations
                [ 1]IBERS, Aberystwyth University , Cledwyn Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3DD, UK
                [ 2]University of Leicester , Leicester, UK
                Author notes
                *Correspondence: David E. Whitworth, dew@ 123456aber.ac.uk
                Article
                mgen000152
                10.1099/mgen.0.000152
                5857379
                29345219
                3bbe3c6a-fd43-4916-83be-1098f3344129
                © 2018 The Authors

                This is an open access article under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 November 2017
                : 21 December 2017
                Funding
                Funded by: Aberystwyth University
                Categories
                Research Article
                Systems Microbiology: Transcriptomics, Proteomics, Networks
                Custom metadata
                0

                antimicrobial activity,mixed culture,myxobacteria,predatome,outer membrane vesicles,transcriptome

                Comments

                Comment on this article