6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shiga Toxins: An Update on Host Factors and Biomedical Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shiga toxins (Stxs) are classic bacterial toxins and major virulence factors of toxigenic Shigella dysenteriae and enterohemorrhagic Escherichia coli (EHEC). These toxins recognize a glycosphingolipid globotriaosylceramide (Gb3/CD77) as their receptor and inhibit protein synthesis in cells by cleaving 28S ribosomal RNA. They are the major cause of life-threatening complications such as hemolytic uremic syndrome (HUS), associated with severe cases of EHEC infection, which is the leading cause of acute kidney injury in children. The threat of Stxs is exacerbated by the lack of toxin inhibitors and effective treatment for HUS. Here, we briefly summarize the Stx structure, subtypes, in vitro and in vivo models, Gb3 expression and HUS, and then introduce recent studies using CRISPR-Cas9-mediated genome-wide screens to identify the host cell factors required for Stx action. We also summarize the latest progress in utilizing and engineering Stx components for biomedical applications.

          Related collections

          Most cited references179

          • Record: found
          • Abstract: found
          • Article: not found

          A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-scale CRISPR-Cas9 knockout screening in human cells.

            The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic screens in human cells using the CRISPR-Cas9 system.

              The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                18 March 2021
                March 2021
                : 13
                : 3
                : 222
                Affiliations
                [1 ]Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
                [2 ]Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; Songhai.Tian@ 123456childrens.harvard.edu (S.T.); hatim.thaker@ 123456childrens.harvard.edu (H.T.)
                [3 ]Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
                Author notes
                Author information
                https://orcid.org/0000-0002-1775-9908
                https://orcid.org/0000-0001-6630-1904
                Article
                toxins-13-00222
                10.3390/toxins13030222
                8003205
                33803852
                3c6e5028-e320-4543-9c30-fda226cc2bc3
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 February 2021
                : 15 March 2021
                Categories
                Review

                Molecular medicine
                shiga toxin,ehec,shigella,hemolytic uremic syndrome,gb3,laptm4a,tm9sf2,immunotoxin,bacterial toxins,toxins

                Comments

                Comment on this article