22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials

      review-article
      1 , 1 , a , 1
      Nature Communications
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The marriage of photochromic molecules with the rapidly expanding portfolio of nanocarbons is providing new multifunctional and responsive nanomaterials. Here, the authors review recent progress in such materials' fabrication and their possible implementations, and suggest future directions of study.

          Abstract

          Multifunctional carbon-based nanomaterials offer routes towards the realization of smart and high-performing (opto)electronic (nano)devices, sensors and logic gates. Meanwhile photochromic molecules exhibit reversible transformation between two forms, induced by the absorption of electromagnetic radiation. By combining carbon-based nanomaterials with photochromic molecules, one can achieve reversible changes in geometrical structure, electronic properties and nanoscale mechanics triggering by light. This thus enables a reversible modulation of numerous physical and chemical properties of the carbon-based nanomaterials towards the fabrication of cognitive devices. This review examines the state of the art with respect to these responsive materials, and seeks to identify future directions for investigation.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carbon-based electronics.

            The semiconductor industry has been able to improve the performance of electronic systems for more than four decades by making ever-smaller devices. However, this approach will soon encounter both scientific and technical limits, which is why the industry is exploring a number of alternative device technologies. Here we review the progress that has been made with carbon nanotubes and, more recently, graphene layers and nanoribbons. Field-effect transistors based on semiconductor nanotubes and graphene nanoribbons have already been demonstrated, and metallic nanotubes could be used as high-performance interconnects. Moreover, owing to the excellent optical properties of nanotubes it could be possible to make both electronic and optoelectronic devices from the same material.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Light-driven monodirectional molecular rotor.

              Attempts to fabricate mechanical devices on the molecular level have yielded analogues of rotors, gears, switches, shuttles, turnstiles and ratchets. Molecular motors, however, have not yet been made, even though they are common in biological systems. Rotary motion as such has been induced in interlocked systems and directly visualized for single molecules, but the controlled conversion of energy into unidirectional rotary motion has remained difficult to achieve. Here we report repetitive, monodirectional rotation around a central carbon-carbon double bond in a chiral, helical alkene, with each 360 degrees rotation involving four discrete isomerization steps activated by ultraviolet light or a change in the temperature of the system. We find that axial chirality and the presence of two chiral centres are essential for the observed monodirectional behaviour of the molecular motor. Two light-induced cis-trans isomerizations are each associated with a 180 degrees rotation around the carbon-carbon double bond and are each followed by thermally controlled helicity inversions, which effectively block reverse rotation and thus ensure that the four individual steps add up to one full rotation in one direction only. As the energy barriers of the helicity inversion steps can be adjusted by structural modifications, chiral alkenes based on our system may find use as basic components for 'molecular machinery' driven by light.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                12 April 2016
                2016
                : 7
                : 11118
                Affiliations
                [1 ]ISIS & icFRC, Université de Strasbourg & CNRS , 8 allée Gaspard Monge, Strasbourg 67000, France
                Author notes
                Article
                ncomms11118
                10.1038/ncomms11118
                4832057
                27067387
                3c73773b-0daf-4c89-96f8-b6c12173d07b
                Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 08 October 2015
                : 18 February 2016
                Categories
                Review Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article