Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Magnetotactic bacteria belong to a group of bacteria that synthesize iron oxide nanoparticles covered by biological material that are called magnetosomes. These bacteria use the magnetosomes as a compass to navigate in the direction of the earth’s magnetic field. This compass helps the bacteria to find the optimum conditions for their growth and survival. Here, we review several medical applications of magnetosomes, such as those in magnetic resonance imaging (MRI), magnetic hyperthermia, and drug delivery. Different methods that can be used to prepare the magnetosomes for these applications are described. The toxicity and biodistribution results that have been published are summarized. They show that the magnetosomes can safely be used provided that they are prepared in specific conditions. The advantageous properties of the magnetosomes compared with those of chemically synthesized nanoparticles of similar composition are also highlighted.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.

          Since the manufacture and use of nanoparticles are increasing, humans are more likely to be exposed occupationally or via consumer products and the environment. However, so far toxicity data for most manufactured nanoparticles are limited. The aim of this study was to investigate and compare different nanoparticles and nanotubes regarding cytotoxicity and ability to cause DNA damage and oxidative stress. The study was focused on different metal oxide particles (CuO, TiO2, ZnO, CuZnFe2O4, Fe3O4, Fe2O3), and the toxicity was compared to that of carbon nanoparticles and multiwalled carbon nanotubes (MWCNT). The human lung epithelial cell line A549 was exposed to the particles, and cytotoxicity was analyzed using trypan blue staining. DNA damage and oxidative lesions were determined using the comet assay, and intracellular production of reactive oxygen species (ROS) was measured using the oxidation-sensitive fluoroprobe 2',7'-dichlorofluorescin diacetate (DCFH-DA). The results showed that there was a high variation among different nanoparticles concerning their ability to cause toxic effects. CuO nanoparticles were most potent regarding cytotoxicity and DNA damage. The toxicity was likely not explained by Cu ions released to the cell medium. These particles also caused oxidative lesions and were the only particles that induced an almost significant increase (p = 0.058) in intracellular ROS. ZnO showed effects on cell viability as well as DNA damage, whereas the TiO2 particles (a mix of rutile and anatase) only caused DNA damage. For iron oxide particles (Fe3O4, Fe2O3), no or low toxicity was observed, but CuZnFe2O4 particles were rather potent in inducing DNA lesions. Finally, the carbon nanotubes showed cytotoxic effects and caused DNA damage in the lowest dose tested. The effects were not explained by soluble metal impurities. In conclusion, this study highlights the in vitro toxicity of CuO nanoparticles.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Magnetosome formation in prokaryotes.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)

              Superparamagnetic iron oxide nanoparticles (SPION) are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein-SPION interaction and various safety considerations relating to SPION exposure are also addressed.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/106081
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                11 March 2014
                2014
                : 2
                : 5
                Affiliations
                [1] 1Nanobacterie SARL , Paris, France
                [2] 2Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie , Paris, France
                Author notes

                Edited by: Dongzhi Wei, East China University of Science and Technology, China

                Reviewed by: Pulak Nath, Los Alamos National Laboratory, USA; Richard Frankel, California Polytechnic State University, USA

                *Correspondence: Edouard Alphandéry, Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie, 4 Place Jussieu, Paris 75005, France e-mail: edouardalphandery@ 123456hotmail.com

                This article was submitted to Process and Industrial Biotechnology, a section of the journal Frontiers in Bioengineering and Biotechnology.

                Article
                10.3389/fbioe.2014.00005
                4126476
                25152880
                3cc7e08e-e832-4296-b111-e2718ac04c16
                Copyright © 2014 Alphandéry.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 September 2013
                : 26 February 2014
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 43, Pages: 6, Words: 5288
                Categories
                Bioengineering and Biotechnology
                Mini Review

                magnetosomes,magnetic hyperthermia,magnetotactic bacteria,cancer,heat therapy,thermotherapy

                Comments

                Comment on this article