33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Turnover of Phosphatidic Acid through Distinct Signaling Pathways Affects Multiple Aspects of Pollen Tube Growth in Tobacco

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phosphatidic acid (PA) is an important intermediate in membrane lipid metabolism that acts as a key component of signaling networks, regulating the spatio-temporal dynamics of the endomembrane system and the cytoskeleton. Using tobacco pollen tubes as a model, we addressed the signaling effects of PA by probing the functions of three most relevant enzymes that regulate the production and degradation of PA, namely, phospholipases D (PLD), diacylglycerol kinases (DGKs), and lipid phosphate phosphatases (LPPs). Phylogenetic analysis indicated a highly dynamic evolution of all three lipid-modifying enzymes in land plants, with many clade-specific duplications or losses and massive diversification of the C2-PLD family. In silico transcriptomic survey revealed increased levels of expression of all three PA-regulatory genes in pollen development (particularly the DGKs). Using specific inhibitors we were able to distinguish the contributions of PLDs, DGKs, and LPPs into PA-regulated processes. Thus, suppressing PA production by inhibiting either PLD or DGK activity compromised membrane trafficking except early endocytosis, disrupted tip-localized deposition of cell wall material, especially pectins, and inhibited pollen tube growth. Conversely, suppressing PA degradation by inhibiting LPP activity using any of three different inhibitors significantly stimulated pollen tube growth, and similar effect was achieved by suppressing the expression of tobacco pollen LPP4 using antisense knock-down. Interestingly, inhibiting specifically DGK changed vacuolar dynamics and the morphology of pollen tubes, whereas inhibiting specifically PLD disrupted the actin cytoskeleton. Overall, our results demonstrate the critical importance of all three types of enzymes involved in PA production and degradation, with strikingly different roles of PA produced by the PLD and DGK pathways, in pollen tube growth.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Diacylglycerol kinases: at the hub of cell signalling.

          DGKs (diacylglycerol kinases) are members of a unique and conserved family of intracellular lipid kinases that phosphorylate DAG (diacylglycerol), catalysing its conversion into PA (phosphatidic acid). This reaction leads to attenuation of DAG levels in the cell membrane, regulating a host of intracellular signalling proteins that have evolved the ability to bind this lipid. The product of the DGK reaction, PA, is also linked to the regulation of diverse functions, including cell growth, membrane trafficking, differentiation and migration. In multicellular eukaryotes, DGKs provide a link between lipid metabolism and signalling. Genetic experiments in Caenorhabditis elegans, Drosophila melanogaster and mice have started to unveil the role of members of this protein family as modulators of receptor-dependent responses in processes such as synaptic transmission and photoreceptor transduction, as well as acquired and innate immune responses. Recent discoveries provide new insights into the complex mechanisms controlling DGK activation and their participation in receptor-regulated processes. After more than 50 years of intense research, the DGK pathway emerges as a key player in the regulation of cell responses, offering new possibilities of therapeutic intervention in human pathologies, including cancer, heart disease, diabetes, brain afflictions and immune dysfunctions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth.

            Tip-localized reactive oxygen species (ROS) were detected in growing pollen tubes by chloromethyl dichlorodihydrofluorescein diacetate oxidation, while tip-localized extracellular superoxide production was detected by nitroblue tetrazolium (NBT) reduction. To investigate the origin of the ROS we cloned a fragment of pollen specific tobacco NADPH oxidase (NOX) closely related to a pollen specific NOX from Arabidopsis. Transfection of tobacco pollen tubes with NOX-specific antisense oligodeoxynucleotides (ODNs) resulted in decreased amount of NtNOX mRNA, lower NOX activity and pollen tube growth inhibition. The ROS scavengers and the NOX inhibitor diphenylene iodonium chloride (DPI) inhibited growth and ROS formation in tobacco pollen tube cultures. Exogenous hydrogen peroxide (H2O2) rescued the growth inhibition caused by NOX antisense ODNs. Exogenous CaCl2 increased NBT reduction at the pollen tube tip, suggesting that Ca2+ increases the activity of pollen NOX in vivo. The results show that tip-localized ROS produced by a NOX enzyme is needed to sustain the normal rate of pollen tube growth and that this is likely to be a general mechanism in the control of tip growth of polarized plant cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns.

              We previously identified mutations in the Lpin1 gene, encoding lipin-1, as the underlying cause of lipodystrophy in the fatty liver dystrophy (fld) mutant mouse. Lipin-1 is normally expressed at high levels in adipose tissue and skeletal muscle, and deficiency in the fld mouse causes impaired adipose tissue development, insulin resistance, and altered energy expenditure. We also identified two additional lipin protein family members of unknown function, lipin-2 and lipin-3. Han et al. (Han, G. S., Wu, W. I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210-9218) recently demonstrated that the single lipin homolog in yeast, Smp2, exhibits phosphatidate phosphatase type-1 (PAP1) activity, which has a key role in glycerolipid synthesis. Here we demonstrate that lipin-1 accounts for all of the PAP1 activity in white and brown adipose tissue and skeletal muscle. However, livers of lipin-1-deficient mice exhibited normal PAP1 activity, indicating that other members of the lipin protein family could have PAP1 activity. Consistent with this possibility, recombinant lipin-2 and lipin-3 possess PAP1 activity. Each of the three lipin family members showed Mg2+-dependent activity that was specific for phosphatidate under the conditions employed. The different lipins showed distinct tissue expression patterns. Our results establish the three mammalian lipin proteins as PAP1 enzymes and explain the biochemical basis for lipodystrophy in the lipin-1-deficient fld mouse.
                Bookmark

                Author and article information

                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in plant science
                Frontiers Research Foundation
                1664-462X
                19 March 2012
                2012
                : 3
                : 54
                Affiliations
                [1] 1simpleInstitute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic Prague, Czech Republic
                [2] 2simpleDepartment of Experimental Plant Biology, Faculty of Science, Charles University in Prague Prague, Czech Republic
                [3] 3simpleCore Facility of Cell Imaging and Ultrastructure Research, University of Vienna Vienna, Austria
                [4] 4simpleDepartment of Molecular Plant Physiology, Institute for Wetland and Water Research, Radboud University Nijmegen Nijmegen, Netherlands
                [5] 5simpleSchool of Biological Sciences, University of Sydney Sydney, NSW, Australia
                Author notes

                Edited by: Xuemin Wang, University of Missouri, USA

                Reviewed by: Robert L. Houtz, University of Kentucky, USA; Serena Varotto, University of Padova, Italy

                *Correspondence: Martin Potocký, Laboratory of Cell Biology, Institute of Experimental Botany AS CR, v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic. e-mail: potocky@ 123456ueb.cas.cz

                This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

                Article
                10.3389/fpls.2012.00054
                3355619
                22639652
                3d0759a8-833e-44a3-b9b5-9c52ac7b38eb
                Copyright © 2012 Pleskot, Pejchar, Bezvoda, Lichtscheidl, Wolters-Arts, Marc, Žárský and Potocký.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 01 December 2011
                : 29 February 2012
                Page count
                Figures: 11, Tables: 0, Equations: 0, References: 71, Pages: 13, Words: 10442
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                signaling,diacylglycerol kinase,phosphatidic acid,pollen tube,phospholipase d,lipid phosphate phosphatase,tobacco,tip growth

                Comments

                Comment on this article