1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum interference in second-harmonic generation from monolayer WSe2

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A hallmark of wave-matter duality is the emergence of quantum-interference phenomena when an electronic transition follows different trajectories. Such interference results in asymmetric absorption lines such as Fano resonances, and gives rise to secondary effects like electromagnetically induced transparency (EIT) when multiple optical transitions are pumped. Few solid-state systems show quantum interference and EIT, with quantum-well intersubband transitions in the IR offering the most promising avenue to date to devices exploiting optical gain without inversion. Quantum interference is usually hampered by inhomogeneous broadening of electronic transitions, making it challenging to achieve in solids at visible wavelengths and elevated temperatures. However, disorder effects can be mitigated by raising the oscillator strength of atom-like electronic transitions - excitons - which arise in monolayers of transition-metal dichalcogenides (TMDCs). Quantum interference, probed by second-harmonic generation (SHG), emerges in monolayer WSe2, without a cavity, splitting the SHG spectrum. The splitting exhibits spectral anticrossing behaviour, and is related to the number of Rabi flops the strongly driven system undergoes. The SHG power-law exponent deviates strongly from the canonical value of 2, showing a Fano-like wavelength dependence which is retained at room temperature. The work opens opportunities in solid-state quantum-nonlinear optics for optical mixing, gain without inversion and quantum-information processing.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Fano resonances in photonics

          The importance of the Fano resonance concept is recognized across multiple fields of physics. In this Review, Fano resonance is explored in the context of optics, with particular emphasis on dielectric nanostructures and metasurfaces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

            The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              Excitonic Linewidth Approaching the Homogeneous Limit in MoS2 -Based van der Waals Heterostructures

                Bookmark

                Author and article information

                Journal
                23 November 2018
                Article
                1811.09479
                3d25dd01-a748-4004-9ba7-b32a3efcacc1

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                21 pages, 4 figures
                cond-mat.mes-hall

                Nanophysics
                Nanophysics

                Comments

                Comment on this article