1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tunable Aziridinium Ylide Reactivity: Noncovalent Interactions Enable Divergent Product Outcomes

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts

          Organosulfur compounds have long played a vital role in organic chemistry and in the development of novel chemical structures and architectures. Prominent among these organosulfur compounds are those involving a sulfur(IV) center, which have been the subject of countless investigations over more than a hundred years. In addition to a long list of textbook sulfur-based reactions, there has been a sustained interest in the chemistry of organosulfur(IV) compounds in recent years. Of particular interest within organosulfur chemistry is the ease with which the synthetic chemist can effect a wide range of transformations through either bond formation or bond cleavage at sulfur. This review aims to cover the developments of the past decade in the chemistry of organic sulfur(IV) molecules and provide insight into both the wide range of reactions which critically rely on this versatile element and the diverse scaffolds that can thereby be synthesized.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Catalytic X-H insertion reactions based on carbenoids.

            Catalysed X-H insertion reactions into diazo compounds (where X is any heteroatom) are a powerful yet underutilized class of transformations. The following review will explore the historical development of X-H insertion and give an up-to-date account of the metal catalysts most often employed, including an assessment of their strengths and weaknesses. Despite decades of development, recent work on enantioselective variants, as well as applying catalytic X-H insertion towards problems in chemical biology indicate that this field has ample room for innovation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small-molecule discovery from DNA-encoded chemical libraries.

              Researchers seeking to improve the efficiency and cost effectiveness of the bioactive small-molecule discovery process have recently embraced selection-based approaches, which in principle offer much higher throughput and simpler infrastructure requirements compared with traditional small-molecule screening methods. Since selection methods benefit greatly from an information-encoding molecule that can be readily amplified and decoded, several academic and industrial groups have turned to DNA as the basis for library encoding and, in some cases, library synthesis. The resulting DNA-encoded synthetic small-molecule libraries, integrated with the high sensitivity of PCR and the recent development of ultra high-throughput DNA sequencing technology, can be evaluated very rapidly for binding or bond formation with a target of interest while consuming minimal quantities of material and requiring only modest investments of time and equipment. In this tutorial review we describe the development of two classes of approaches for encoding chemical structures and reactivity with DNA: DNA-recorded library synthesis, in which encoding and library synthesis take place separately, and DNA-directed library synthesis, in which DNA both encodes and templates library synthesis. We also describe in vitro selection methods used to evaluate DNA-encoded libraries and summarize successful applications of these approaches to the discovery of bioactive small molecules and novel chemical reactivity.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ACS Catalysis
                ACS Catal.
                American Chemical Society (ACS)
                2155-5435
                2155-5435
                January 21 2022
                January 11 2022
                January 21 2022
                : 12
                : 2
                : 1572-1580
                Affiliations
                [1 ]Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
                [2 ]Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
                Article
                10.1021/acscatal.1c05413
                3d62a1ee-fe06-4140-89ba-5f3deb935770
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article