Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low Pathogenic Avian Influenza Isolates from Wild Birds Replicate and Transmit via Contact in Ferrets without Prior Adaptation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Avian flu: influenza virus receptors in the human airway.

          Although more than 100 people have been infected by H5N1 influenza A viruses, human-to-human transmission is rare. What are the molecular barriers limiting human-to-human transmission? Here we demonstrate an anatomical difference in the distribution in the human airway of the different binding molecules preferred by the avian and human influenza viruses. The respective molecules are sialic acid linked to galactose by an alpha-2,3 linkage (SAalpha2,3Gal) and by an alpha-2,6 linkage (SAalpha2,6Gal). Our findings may provide a rational explanation for why H5N1 viruses at present rarely infect and spread between humans although they can replicate efficiently in the lungs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Avian influenza A (H5N1) infection in humans.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A single amino acid in the PB2 gene of influenza A virus is a determinant of host range.

              The single gene reassortant virus that derives its PB2 gene from the avian influenza A/Mallard/NY/78 virus and remaining genes from the human influenza A/Los Angeles/2/87 virus exhibits a host range restriction (hr) phenotype characterized by efficient replication in avian tissue and failure to produce plaques in mammalian Madin-Darby canine kidney cells. The hr phenotype is associated with restriction of viral replication in the respiratory tract of squirrel monkeys and humans. To identify the genetic basis of the hr phenotype, we isolated four phenotypic hr mutant viruses that acquired the ability to replicate efficiently in mammalian tissue. Segregational analysis indicated that the loss of the hr phenotype was due to a mutation in the PB2 gene itself. The nucleotide sequences of the PB2 gene of each of the four hr mutants revealed that a single amino acid substitution at position 627 (Glu-->Lys) was responsible for the restoration of the ability of the PB2 single gene reassortant to replicate in Madin-Darby canine kidney cells. Interestingly, the amino acid at position 627 in every avian influenza A virus PB2 protein analyzed to date is glutamic acid, and in every human influenza A virus PB2 protein, it is lysine. Thus, the amino acid at residue 627 of PB2 is an important determinant of host range of influenza A viruses.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                1 June 2012
                : 7
                : 6
                : e38067
                Affiliations
                [1 ]Department of Pathology, University of Georgia, Athens, Georgia, United States of America
                [2 ]Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
                [3 ]Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
                [4 ]Department of Population Health, University of Georgia, Athens, Georgia, United States of America
                Virginia Polytechnic Institute and State University, United States of America
                Author notes

                Conceived and designed the experiments: EAD JAP DES EWH SMT. Performed the experiments: EAD JAP JHS JTG KCB EWH. Analyzed the data: EAD JAP KCB DAS RDB EWH SMT. Contributed reagents/materials/analysis tools: KCB DAS RDB DES EWH SMT. Wrote the paper: EAD JAP EWH SMT.

                Article
                PONE-D-11-19276
                10.1371/journal.pone.0038067
                3365887
                22675507
                3d94b445-82f9-4b18-af38-b4175b73ea67
                Driskell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 September 2011
                : 30 April 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Biochemistry
                Glycobiology
                Microbiology
                Virology
                Emerging Viral Diseases
                Viral Transmission and Infection
                Medicine
                Infectious Diseases
                Viral Diseases
                Influenza
                Zoonoses
                Avian influenza A viruses
                Veterinary Science
                Animal Types
                Wildlife
                Veterinary Diseases
                Zoonotic Diseases
                Animal Influenza

                Uncategorized
                Uncategorized

                Comments

                Comment on this article