7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Postural Hyperventilation as a Cause of Postural Tachycardia Syndrome: Increased Systemic Vascular Resistance and Decreased Cardiac Output When Upright in All Postural Tachycardia Syndrome Variants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Postural tachycardia syndrome ( POTS) is a heterogeneous condition. We stratified patients previously evaluated for POTS on the basis of supine resting cardiac output ( CO) or with the complaint of platypnea or “shortness of breath” during orthostasis. We hypothesize that postural hyperventilation is one cause of POTS and that hyperventilation‐associated POTS occurs when initial reduction in CO is sufficiently large. We also propose that circulatory abnormalities normalize with restoration of CO 2.

          Methods and Results

          Fifty‐eight enrollees with POTS were compared with 16 healthy volunteer controls. Low CO in POTS was defined by a resting supine CO <4 L/min. Patients with shortness of breath had hyperventilation with end tidal CO 2 <30 Torr during head‐up tilt table testing. There were no differences in height or weight between control patients and patients with POTS or differences between the POTS groups. Beat‐to‐beat blood pressure was measured by photoplethysmography, and CO was measured by ModelFlow. Systemic vascular resistance was defined as mean arterial blood pressure/ CO. End tidal CO 2 and cerebral blood flow velocity of the middle cerebral artery were only reduced during head‐up tilt in the hyperventilation group, whereas blood pressure was increased compared with control. We corrected the reduced end tidal CO 2 in hyperventilation by addition of exogenous CO 2 into a rebreathing apparatus. With added CO 2, heart rate, blood pressure, CO, and systemic vascular resistance in hyperventilation became similar to control.

          Conclusions

          We conclude that all POTS is related to decreased CO, decreased central blood volume, and increased systemic vascular resistance and that a variant of POTS is consequent to postural hyperventilation.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Postural tachycardia syndrome: a heterogeneous and multifactorial disorder.

          Postural tachycardia syndrome (POTS) is defined by a heart rate increment of 30 beats/min or more within 10 minutes of standing or head-up tilt in the absence of orthostatic hypotension; the standing heart rate is often 120 beats/min or higher. POTS manifests with symptoms of cerebral hypoperfusion and excessive sympathoexcitation. The pathophysiology of POTS is heterogeneous and includes impaired sympathetically mediated vasoconstriction, excessive sympathetic drive, volume dysregulation, and deconditioning. POTS is frequently included in the differential diagnosis of chronic unexplained symptoms, such as inappropriate sinus tachycardia, chronic fatigue, chronic dizziness, or unexplained spells in otherwise healthy young individuals. Many patients with POTS also report symptoms not attributable to orthostatic intolerance, including those of functional gastrointestinal or bladder disorders, chronic headache, fibromyalgia, and sleep disturbances. In many of these cases, cognitive and behavioral factors, somatic hypervigilance associated with anxiety, depression, and behavioral amplification contribute to symptom chronicity. The aims of evaluation in patients with POTS are to exclude cardiac causes of inappropriate tachycardia; elucidate, if possible, the most likely pathophysiologic basis of postural intolerance; assess for the presence of treatable autonomic neuropathies; exclude endocrine causes of a hyperadrenergic state; evaluate for cardiovascular deconditioning; and determine the contribution of emotional and behavioral factors to the patient's symptoms. Management of POTS includes avoidance of precipitating factors, volume expansion, physical countermaneuvers, exercise training, pharmacotherapy (fludrocortisone, midodrine, β-blockers, and/or pyridostigmine), and behavioral-cognitive therapy. A literature search of PubMed for articles published from January 1, 1990, to June 15, 2012, was performed using the following terms (or combination of terms): POTS; postural tachycardia syndrome, orthostatic; orthostatic; syncope; sympathetic; baroreceptors; vestibulosympathetic; hypovolemia; visceral pain; chronic fatigue; deconditioning; headache; Chiari malformation; Ehlers-Danlos; emotion; amygdala; insula; anterior cingulate; periaqueductal gray; fludrocortisone; midodrine; propranolol; β-adrenergic; and pyridostigmine. Studies were limited to those published in English. Other articles were identified from bibliographies of the retrieved articles. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiac origins of the postural orthostatic tachycardia syndrome.

            The purpose of this study was to test the hypothesis that a small heart coupled with reduced blood volume contributes to the postural orthostatic tachycardia syndrome (POTS) and that exercise training improves this syndrome. Patients with POTS have marked increases in heart rate during orthostasis. However, the underlying mechanisms are unknown and the effective therapy is uncertain. Twenty-seven POTS patients underwent autonomic function tests, cardiac magnetic resonance imaging, and blood volume measurements. Twenty-five of them participated in a 3-month specially designed exercise training program with 19 completing the program; these patients were re-evaluated after training. Results were compared with those of 16 healthy controls. Upright heart rate and total peripheral resistance were greater, whereas stroke volume and cardiac output were smaller in patients than in controls. Baroreflex function was similar between groups. Left ventricular mass (median [25th, 75th percentiles], 1.26 g/kg [1.12, 1.37 g/kg] vs. 1.45 g/kg [1.34, 1.57 g/kg]; p < 0.01) and blood volume (60 ml/kg [54, 64 ml/kg] vs. 71 ml/kg [65, 78 ml/kg]; p < 0.01) were smaller in patients than in controls. Exercise training increased left ventricular mass and blood volume by approximately 12% and approximately 7% and decreased upright heart rate by 9 beats/min [1, 17 beats/min]. Ten of 19 patients no longer met POTS criteria after training, whereas patient quality of life assessed by the 36-item Short-Form Health Survey was improved in all patients after training. Autonomic function was intact in POTS patients. The marked tachycardia during orthostasis was attributable to a small heart coupled with reduced blood volume. Exercise training improved or even cured this syndrome in most patients. It seems reasonable to offer POTS a new name based on its underlying pathophysiology, the "Grinch syndrome," because in this famous children's book by Dr. Seuss, the main character had a heart that was "two sizes too small." Copyright (c) 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dysfunctional breathing: a review of the literature and proposal for classification

              Dysfunctional breathing is a term describing breathing disorders where chronic changes in breathing pattern result in dyspnoea and other symptoms in the absence or in excess of the magnitude of physiological respiratory or cardiac disease. We reviewed the literature and propose a classification system for the common dysfunctional breathing patterns described. The literature was searched using the terms: dysfunctional breathing, hyperventilation, Nijmegen questionnaire and thoraco-abdominal asynchrony. We have summarised the presentation, assessment and treatment of dysfunctional breathing, and propose that the following system be used for classification. 1) Hyperventilation syndrome: associated with symptoms both related to respiratory alkalosis and independent of hypocapnia. 2) Periodic deep sighing: frequent sighing with an irregular breathing pattern. 3) Thoracic dominant breathing: can often manifest in somatic disease, if occurring without disease it may be considered dysfunctional and results in dyspnoea. 4) Forced abdominal expiration: these patients utilise inappropriate and excessive abdominal muscle contraction to aid expiration. 5) Thoraco-abdominal asynchrony: where there is delay between rib cage and abdominal contraction resulting in ineffective breathing mechanics. This review highlights the common abnormalities, current diagnostic methods and therapeutic implications in dysfunctional breathing. Future work should aim to further investigate the prevalence, clinical associations and treatment of these presentations. A review of common abnormalities, current diagnostic methods and therapeutic implications in dysfunctional breathing http://ow.ly/ZTzK6
                Bookmark

                Author and article information

                Contributors
                julian_stewart@nymc.edu
                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                10.1002/(ISSN)2047-9980
                JAH3
                ahaoa
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                John Wiley and Sons Inc. (Hoboken )
                2047-9980
                30 June 2018
                03 July 2018
                : 7
                : 13 ( doiID: 10.1002/jah3.2018.7.issue-13 )
                : e008854
                Affiliations
                [ 1 ] Department of Pediatrics New York Medical College Valhalla NY
                [ 2 ] Department of Physiology New York Medical College Valhalla NY
                [ 3 ] Paediatric Respiratory Medicine King's College Hospital National Health Service Foundation Trust London United Kingdom
                [ 4 ] Epidemiology and Biostatistics Baystate Medical Center University of Massachusetts School of Medicine Worcester MA
                Author notes
                [*] [* ] Correspondence to: Julian M. Stewart, MD, PhD, Center for Hypotension, New York Medical College, 19 Bradhurst Ave, Ste 1600S, Hawthorne, NY 10532. E‐mail: julian_stewart@ 123456nymc.edu
                Article
                JAH33340
                10.1161/JAHA.118.008854
                6064900
                29960989
                3e0ba79a-ee25-4c56-850d-a3c448842fa4
                © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 07 February 2018
                : 07 June 2018
                Page count
                Figures: 4, Tables: 1, Pages: 11, Words: 7360
                Funding
                Funded by: National Institutes of Health
                Funded by: National Heart, Lung, and Blood Institute
                Award ID: RO1 HL 134674
                Award ID: RO1 HL 112736
                Funded by: National Institute of Neurological Disorders and Stroke
                Award ID: R21 NS 094644
                Categories
                Original Research
                Original Research
                Vascular Medicine
                Custom metadata
                2.0
                jah33340
                03 July 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.4.1.1 mode:remove_FC converted:03.07.2018

                Cardiovascular Medicine
                blood flow regulation,blood volume,hyperventilation,orthostatic intolerance,tachycardia,vasoconstriction,ventilation,physiology,vascular disease

                Comments

                Comment on this article