32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association between the Perioperative Antioxidative Ability of Platelets and Early Post-Transplant Function of Kidney Allografts: A Pilot Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent studies have demonstrated that the actions of platelets may unfavorably influence post-transplant function of organ allografts. In this study, the association between post-transplant graft function and the perioperative activity of platelet antioxidants was examined among kidney recipients divided into early (EGF), slow (SGF), and delayed graft function (DGF) groups.

          Methodology/Principal Findings

          Activities of superoxide dismutase, catalase, glutathione transferase (GST), glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G6P) were determined and levels of glutathione, oxidized glutathione, and isoprostane were measured in blood samples collected immediately before and during the first and fifth minutes of renal allograft reperfusion. Our results demonstrated a significant increase in isoprostane levels in all groups. Interestingly, in DGF patients, significantly lower levels of perioperative activity of catalase (p<0.02) and GST (p<0.02) were observed. Moreover, in our study, the activity of platelet antioxidants was associated with intensity of perioperative oxidative stress. For discriminating SGF/DGF from EGF, sensitivity, specificity, and positive and negative predictive values of platelet antioxidants were 81–91%, 50–58%, 32–37%, and 90–90.5%, respectively.

          Conclusions

          During renal transplantation, significant changes occur in the activity of platelet antioxidants. These changes seem to be associated with post-transplant graft function and can be potentially used to differentiate between EGF and SGF/DGF. To the best of our knowledge, this is the first study to reveal the potential protective role of platelets in the human transplantation setting.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Delayed graft function in kidney transplantation.

          Delayed graft function is a form of acute renal failure resulting in post-transplantation oliguria, increased allograft immunogenicity and risk of acute rejection episodes, and decreased long-term survival. Factors related to the donor and prerenal, renal, or postrenal transplant factors related to the recipient can contribute to this condition. From experimental studies, we have learnt that both ischaemia and reinstitution of blood flow in ischaemically damaged kidneys after hypothermic preservation activate a complex sequence of events that sustain renal injury and play a pivotal part in the development of delayed graft function. Elucidation of the pathophysiology of renal ischaemia and reperfusion injury has contributed to the development of strategies to decrease the rate of delayed graft function, focusing on donor management, organ procurement and preservation techniques, recipient fluid management, and pharmacological agents (vasodilators, antioxidants, anti-inflammatory agents). Several new drugs show promise in animal studies in preventing or ameliorating ischaemia-reperfusion injury and possibly delayed graft function, but definitive clinical trials are lacking. The goal of monotherapy for the prevention or treatment of is perhaps unattainable, and multidrug approaches or single drug targeting multiple signals will be the next step to reduce post-transplantation injury and delayed graft function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Platelet functions beyond hemostasis.

            Although their central role is in the prevention of bleeding, platelets probably contribute to diverse processes that extend beyond hemostasis and thrombosis. For example, platelets can recruit leukocytes and progenitor cells to sites of vascular injury and inflammation; they release proinflammatory and anti-inflammatory and angiogenic factors and microparticles into the circulation; and they spur thrombin generation. Data from animal models suggest that these functions may contribute to atherosclerosis, sepsis, hepatitis, vascular restenosis, acute lung injury, and transplant rejection. This article represents an integrated summary of presentations given at the Fourth Annual Platelet Colloquium in January 2009. The process of and factors mediating platelet-platelet and platelet-leukocyte interactions in inflammatory and immune responses are discussed, with the roles of P-selectin, chemokines and Src family kinases being highlighted. Also discussed are specific disorders characterized by local or systemic platelet activation, including coronary artery restenosis after percutaneous intervention, alloantibody-mediated transplant rejection, wound healing, and heparin-induced thrombocytopenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress stimulates autophagic flux during ischemia/reperfusion.

              Autophagy is a bulk degradation process in which cytosolic proteins and organelles are degraded through lysosomes. To evaluate autophagic flux in cardiac myocytes, we generated adenovirus and cardiac-specific transgenic mice harboring tandem fluorescent mRFP-GFP-LC3. Starvation significantly increased the number of mRFP-GFP-LC3 dots representing both autophagosomes and autolysosomes per cell, suggesting that autophagic flux is increased in cardiac myocytes. H(2)O(2) significantly increased autophagic flux, which was attenuated in the presence of N-2-mercaptopropionyl glycine (MPG), an antioxidant, suggesting that oxidative stress stimulates autophagy in cardiac myocytes. Myocardial ischemia/reperfusion (I/R) increased both autophagosomes and autolysosomes, thereby increasing autophagic flux. Treatment with MPG attenuated I/R-induced increases in oxidative stress, autophagic flux, and Beclin-1 expression, accompanied by a decrease in the size of myocardial infarction (MI)/area at risk (AAR), suggesting that oxidative stress plays an important role in mediating autophagy and myocardial injury during I/R. MI/AAR after I/R was significantly reduced in beclin1(+/-) mice, whereas beclin1(+/-) mice treated with MPG exhibited no additional reduction in the size of MI/AAR after I/R. These results suggest that oxidative stress plays an important role in mediating autophagy during I/R, and that activation of autophagy through oxidative stress mediates myocardial injury in response to I/R in the mouse heart.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                18 January 2012
                : 7
                : 1
                : e29779
                Affiliations
                [1 ]Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Szczecin, Poland
                [2 ]Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
                University of Colorado, United States of America
                Author notes

                Conceived and designed the experiments: BD LD. Performed the experiments: BD. Analyzed the data: WB. Contributed reagents/materials/analysis tools: BD LD. Wrote the paper: WB. Study concept, performed biochemical analyses: BD. Statistical analysis, wrote the manuscript, revised the manuscript: WB. Clinical aspects of the study: LD.

                Article
                PONE-D-11-19215
                10.1371/journal.pone.0029779
                3261166
                22279544
                3e22580d-3f77-4afb-9c2f-85bf574caf66
                Dołęgowska et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 September 2011
                : 4 December 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Renal System
                Medicine
                Anatomy and Physiology
                Renal System
                Hematology
                Nephrology
                Oncology
                Basic Cancer Research
                Surgery

                Uncategorized
                Uncategorized

                Comments

                Comment on this article