9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extra-pair paternity and the evolution of testis size in a behaviorally monogamous tropical mammal, the large treeshrew (Tupaia tana)

      Behavioral Ecology and Sociobiology
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical confidence for likelihood-based paternity inference in natural populations.

          Paternity inference using highly polymorphic codominant markers is becoming common in the study of natural populations. However, multiple males are often found to be genetically compatible with each offspring tested, even when the probability of excluding an unrelated male is high. While various methods exist for evaluating the likelihood of paternity of each nonexcluded male, interpreting these likelihoods has hitherto been difficult, and no method takes account of the incomplete sampling and error-prone genetic data typical of large-scale studies of natural systems. We derive likelihood ratios for paternity inference with codominant markers taking account of typing error, and define a statistic delta for resolving paternity. Using allele frequencies from the study population in question, a simulation program generates criteria for delta that permit assignment of paternity to the most likely male with a known level of statistical confidence. The simulation takes account of the number of candidate males, the proportion of males that are sampled and gaps and errors in genetic data. We explore the potentially confounding effect of relatives and show that the method is robust to their presence under commonly encountered conditions. The method is demonstrated using genetic data from the intensively studied red deer (Cervus elaphus) population on the island of Rum, Scotland. The Windows-based computer program, CERVUS, described in this study is available from the authors. CERVUS can be used to calculate allele frequencies, run simulations and perform parentage analysis using data from all types of codominant markers.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Monogamy in Mammals

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Females increase offspring heterozygosity and fitness through extra-pair matings.

              Females in a variety of species commonly mate with multiple males, and there is evidence that they benefit by producing offspring of higher genetic quality; however, the nature of these genetic benefits is debated. Enhanced offspring survival or quality can result from intrinsic effects of paternal genes---'good genes'--or from interactions between the maternal and paternal genomes--'compatible genes'. Evidence for the latter process is accumulating: matings between relatives lead to decreased reproductive success, and the individual level of inbreeding--measured as average heterozygosity--is a strong fitness predictor. Females should thus benefit from mating with genetically dissimilar males. In many birds, social monogamy restricts mate choice, but females may circumvent this by pursuing extra-pair copulations. Here we show that female blue tits, Parus caeruleus, increase the heterozygosity of their progeny through extra-pair matings. Females thereby produce offspring of higher reproductive value, because less inbred individuals have increased survival chances, a more elaborate male secondary sexual trait (crown colour) and higher reproductive success. The cost of inbreeding may therefore be an important factor driving the evolution of female extra-pair mating.
                Bookmark

                Author and article information

                Journal
                Behavioral Ecology and Sociobiology
                Behav Ecol Sociobiol
                Springer Nature
                0340-5443
                1432-0762
                November 8 2007
                July 28 2007
                : 62
                : 2
                : 201-212
                Article
                10.1007/s00265-007-0454-7
                3e2afc83-ff09-4c63-86f0-42722a1a91c4
                © 2007
                History

                Comments

                Comment on this article