10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamics and Regulation of Insulin Secretion in Pancreatic Islets from Normal Young Children

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin secretion has only exceptionally been investigated in pancreatic islets from healthy young children. It remains unclear whether those islets behave like adult islets despite substantial differences in cellular composition and higher β-cell replication rates. Islets were isolated from 5 infants/toddlers (11–36 month-old) and perifused to characterize their dynamics of insulin secretion when subjected to various stimuli and inhibitors. Their insulin responses were compared to those previously reported for similarly treated adult islets. Qualitatively, infant islets responded like adult islets to stimulation by glucose, tolbutamide, forskolin (to increase cAMP), arginine and the combination of leucine and glutamine, and to inhibition by diazoxide and CaCl 2 omission. This similarity included the concentration-dependency and biphasic pattern of glucose-induced insulin secretion, the dynamics of the responses to non-glucose stimuli and metabolic amplification of these responses. The insulin content was not different, but fractional insulin secretion rates were lower in infant than adult islets irrespective of the stimulus. However, the stimulation index was similar because basal secretion rates were also lower in infant islets. In conclusion, human β-cells are functionally mature by the age of one year, before expansion of their mass is complete. Their responsiveness (stimulation index) to all stimuli is not smaller than that of adult β-cells. Yet, under basal and stimulated conditions, they secrete smaller proportions of their insulin stores in keeping with smaller in vivo insulin needs during infancy.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans.

          Little is known about the capacity, mechanisms, or timing of growth in beta-cell mass in humans. We sought to establish if the predominant expansion of beta-cell mass in humans occurs in early childhood and if, as in rodents, this coincides with relatively abundant beta-cell replication. We also sought to establish if there is a secondary growth in beta-cell mass coincident with the accelerated somatic growth in adolescence. To address these questions, pancreas volume was determined from abdominal computer tomographies in 135 children aged 4 weeks to 20 years, and morphometric analyses were performed in human pancreatic tissue obtained at autopsy from 46 children aged 2 weeks to 21 years. We report that 1) beta-cell mass expands by severalfold from birth to adulthood, 2) islets grow in size rather than in number during this transition, 3) the relative rate of beta-cell growth is highest in infancy and gradually declines thereafter to adulthood with no secondary accelerated growth phase during adolescence, 4) beta-cell mass (and presumably growth) is highly variable between individuals, and 5) a high rate of beta-cell replication is coincident with the major postnatal expansion of beta-cell mass. These data imply that regulation of beta-cell replication during infancy plays a major role in beta-cell mass in adult humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activating mutations in the ABCC8 gene in neonatal diabetes mellitus.

            The ATP-sensitive potassium (K(ATP)) channel, composed of the beta-cell proteins sulfonylurea receptor (SUR1) and inward-rectifying potassium channel subunit Kir6.2, is a key regulator of insulin release. It is inhibited by the binding of adenine nucleotides to subunit Kir6.2, which closes the channel, and activated by nucleotide binding or hydrolysis on SUR1, which opens the channel. The balance of these opposing actions determines the low open-channel probability, P(O), which controls the excitability of pancreatic beta cells. We hypothesized that activating mutations in ABCC8, which encodes SUR1, cause neonatal diabetes. We screened the 39 exons of ABCC8 in 34 patients with permanent or transient neonatal diabetes of unknown origin. We assayed the electrophysiologic activity of mutant and wild-type K(ATP) channels. We identified seven missense mutations in nine patients. Four mutations were familial and showed vertical transmission with neonatal and adult-onset diabetes; the remaining mutations were not transmitted and not found in more than 300 patients without diabetes or with early-onset diabetes of similar genetic background. Mutant channels in intact cells and in physiologic concentrations of magnesium ATP had a markedly higher P(O) than did wild-type channels. These overactive channels remained sensitive to sulfonylurea, and treatment with sulfonylureas resulted in euglycemia. Dominant mutations in ABCC8 accounted for 12 percent of cases of neonatal diabetes in the study group. Diabetes results from a newly discovered mechanism whereby the basal magnesium-nucleotide-dependent stimulatory action of SUR1 on the Kir pore is elevated and blockade by sulfonylureas is preserved. Copyright 2006 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formation of a human β-cell population within pancreatic islets is set early in life.

              Insulin resistance can be compensated by increased functional pancreatic β-cell mass; otherwise, diabetes ensues. Such compensation depends not only on environmental and genetic factors but also on the baseline β-cell mass from which the expansion originates. Little is known about assembly of a baseline β-cell mass in humans. Here, we examined formation of β-cell populations relative to other pancreatic islet cell types and associated neurons throughout the normal human lifespan. Human pancreatic sections derived from normal cadavers aged 24 wk premature to 72 yr were examined by immunofluorescence. Insulin, glucagon, and somatostatin were used as markers for β-, α-, and δ-cells, respectively. Cytokeratin-19 marked ductal cells, Ki67 cell proliferation, and Tuj1 (neuronal class III β-tubulin) marked neurons. Most β-cell neogenesis was observed preterm with a burst of β-cell proliferation peaking within the first 2 yr of life. Thereafter, little indication of β-cell growth was observed. Postnatal proliferation of α- and δ-cells was rarely seen, but a wave of ductal cell proliferation was found mostly associated with exocrine cell expansion. The β-cell to α-cell ratio doubled neonatally, reflecting increased growth of β-cells, but during childhood, there was a 7-fold change in the β-cell to δ-cell ratio, reflecting an additional loss of δ-cells. A close association of neurons to pancreatic islets was noted developmentally and retained throughout adulthood. Negligible neuronal association to exocrine pancreas was observed. Human baseline β-cell population and appropriate association with other islet cell types is established before 5 yr of age.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2 November 2016
                2016
                : 11
                : 11
                : e0165961
                Affiliations
                [001]Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
                Joslin Diabetes Center, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Conceptualization: JCH.

                • Data curation: JCH MN.

                • Formal analysis: JCH MN.

                • Funding acquisition: JCH.

                • Investigation: JCH MN.

                • Methodology: JCH MN.

                • Project administration: JCH.

                • Resources: JCH.

                • Supervision: JCH.

                • Validation: JCH MN.

                • Visualization: JCH MN.

                • Writing – original draft: JCH.

                • Writing – review & editing: JCH MN.

                Article
                PONE-D-16-25495
                10.1371/journal.pone.0165961
                5091846
                27806105
                3eaff775-8d7b-4578-9ea4-c71b6e26cf6a
                © 2016 Henquin, Nenquin

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 June 2016
                : 20 October 2016
                Page count
                Figures: 3, Tables: 1, Pages: 13
                Funding
                Funded by: Directorate for Scientific Research of the French Community od Belgium
                Award ID: ARC-05/10-328
                Award Recipient :
                This work was funded by Directorate for Scientific Research of the French Community of Belgium (ARC 05/10-328). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Endocrinology
                Endocrine Physiology
                Insulin Secretion
                Biology and Life Sciences
                Physiology
                Endocrine Physiology
                Insulin Secretion
                Medicine and Health Sciences
                Physiology
                Endocrine Physiology
                Insulin Secretion
                Medicine and Health Sciences
                Endocrinology
                Diabetic Endocrinology
                Insulin
                Biology and Life Sciences
                Biochemistry
                Hormones
                Insulin
                People and Places
                Population Groupings
                Age Groups
                Children
                Infants
                People and Places
                Population Groupings
                Families
                Children
                Infants
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Carbohydrates
                Monosaccharides
                Glucose
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Carbohydrates
                Monosaccharides
                Glucose
                Biology and Life Sciences
                Anatomy
                Endocrine System
                Pancreas
                Medicine and Health Sciences
                Anatomy
                Endocrine System
                Pancreas
                Biology and Life Sciences
                Anatomy
                Exocrine Glands
                Pancreas
                Medicine and Health Sciences
                Anatomy
                Exocrine Glands
                Pancreas
                People and Places
                Population Groupings
                Age Groups
                Adults
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Amino Acids
                Basic Amino Acids
                Arginine
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Amino Acids
                Basic Amino Acids
                Arginine
                Biology and Life Sciences
                Biochemistry
                Proteins
                Amino Acids
                Basic Amino Acids
                Arginine
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Diazo Compounds
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Diazo Compounds
                Custom metadata
                All relevant data are within the paper and its Supporting information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article