26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine.

          Method

          In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation.

          Results

          Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration.

          Conclusion

          This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13287-015-0244-5) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth

          Hepatocyte Growth Factor (HGF, also known as Scatter Factor) is a powerful mitogen or motility factor in different cells, acting through the tyrosine kinase receptor encoded by the MET protooncogene. Endothelial cells express the MET gene and expose at the cell surface the mature protein (p190MET) made of a 50 kD (alpha) subunit disulfide linked to a 145-kD (beta) subunit. HGF binding to endothelial cells identifies two sites with different affinities. The higher affinity binding site (Kd = 0.35 nM) corresponds to the p190MET receptor. Sub- nanomolar concentrations of HGF, but not of a recombinant inactive precursor, stimulate the receptor kinase activity, cell proliferation and motility. HGF induces repairs of a wound in endothelial cell monolayer. HGF stimulates the scatter of endothelial cells grown on three-dimensional collagen gels, inducing an elongated phenotype. In the rabbit cornea, highly purified HGF promotes neovascularization at sub-nanomolar concentrations. HGF lacks activities related to hemostasis-thrombosis, inflammation and endothelial cells accessory functions. These data show that HGF is an in vivo potent angiogenic factor and in vitro induces endothelial cells to proliferate and migrate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects.

            A novel therapeutic option for the treatment of acute myocardial infarction involves the use of mesenchymal stem cells (MSCs). The purpose of this study was to investigate whether implantation of autologous MSCs results in sustained engraftment, myogenic differentiation, and improved cardiac function in a swine myocardial infarct model. MSCs were isolated and expanded from bone marrow aspirates of 14 domestic swine. A 60-minute left anterior descending artery occlusion was used to produce anterior wall infarction. Piezoelectric crystals were placed within the ischemic region for measurement of regional wall thickness and contractile function. Two weeks later animals autologous, Di-I-labeled MSCs (6 x 10(7)) were implanted into the infarct by direct injection. Hemodynamic and functional measurements were obtained weekly until the time of sacrifice. Immunohistochemistry was used to assess MSC engraftment and myogenic differentiation. Microscopic analysis showed robust engraftment of MSCs in all treated animals. Expression of muscle-specific proteins was seen as early as 2 weeks and could be identified in all animals at sacrifice. The degree of contractile dysfunction was significantly attenuated at 4 weeks in animals implanted with MSCs (5.4% +/- 2.2% versus -3.37% +/- 2.7% in control). In addition, the extent of wall thinning after myocardial infarction was markedly reduced in treated animals. Mesenchymal stem cells are capable of engraftment in host myocardium, demonstrate expression of muscle specific proteins, and may attenuate contractile dysfunction and pathologic thinning in this model of left ventricular wall infarction. MSC cardiomyoplasty may have significant clinical potential in attenuating the pathology associated with myocardial infarction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival.

              Cardiac stem cells and early committed cells (CSCs-ECCs) express c-Met and insulin-like growth factor-1 (IGF-1) receptors and synthesize and secrete the corresponding ligands, hepatocyte growth factor (HGF) and IGF-1. HGF mobilizes CSCs-ECCs and IGF-1 promotes their survival and proliferation. Therefore, HGF and IGF-1 were injected in the hearts of infarcted mice to favor, respectively, the translocation of CSCs-ECCs from the surrounding myocardium to the dead tissue and the viability and growth of these cells within the damaged area. To facilitate migration and homing of CSCs-ECCs to the infarct, a growth factor gradient was introduced between the site of storage of primitive cells in the atria and the region bordering the infarct. The newly-formed myocardium contained arterioles, capillaries, and functionally competent myocytes that with time increased in size, improving ventricular performance at healing and long thereafter. The volume of regenerated myocytes was 2200 microm3 at 16 days after treatment and reached 5100 microm3 at 4 months. In this interval, nearly 20% of myocytes reached the adult phenotype, varying in size from 10,000 to 20,000 microm3. Moreover, there were 43+/-13 arterioles and 155+/-48 capillaries/mm2 myocardium at 16 days, and 31+/-6 arterioles and 390+/-56 capillaries at 4 months. Myocardial regeneration induced increased survival and rescued animals with infarcts that were up to 86% of the ventricle, which are commonly fatal. In conclusion, the heart has an endogenous reserve of CSCs-ECCs that can be activated to reconstitute dead myocardium and recover cardiac function.
                Bookmark

                Author and article information

                Contributors
                caoyu_bj@163.com
                13683684505@163.com
                kazaf-helen@qq.com
                hujingchao117@hotmail.com
                18511712135@163.com
                wang54384@163.com
                929814026@qq.com
                wjs99330@163.com
                wuct@nic.bmi.ac.cn
                slwang@ccmu.edu.cn
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                15 December 2015
                15 December 2015
                2015
                : 6
                : 249
                Affiliations
                [ ]Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050 P.R. China
                [ ]Department of Stomatology, Beijing Jishuitan Hospital, No.31, Xinjiekou East Street, Xicheng District, Beijing, 100035 P.R. China
                [ ]Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850 P.R. China
                [ ]Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, No.10 You An Men Wai Tou Tiao,, Beijing, 100069 P.R. China
                Article
                244
                10.1186/s13287-015-0244-5
                4681125
                26670567
                3ecb3744-f3ab-4130-8f75-5f8c507e4d88
                © Cao et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 August 2015
                : 17 September 2015
                : 23 November 2015
                Funding
                Funded by: Beijing Municipality Government (Beijing Municipality Government grants)
                Award ID: Beijing Scholar Program-PXM2013_014226_000055, PXM2015_014226_000116, PXM2015_014226_000055, PXM2015_014226_000052, PXM2014_014226_000048, PXM2014_014226_000013, PXM2014_014226_000053, Z121100005212004, PXM 2013_014226_000021, PXM 2013_014226_07_000080 and TJSHG201310025005
                Award Recipient :
                Funded by: National Basic Research Program of China
                Award ID: 2007CB947304 and 2010CB944801
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China (CN);
                Award ID: 81371108
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Molecular medicine
                dental pulp stem cells,cell injection,cell sheet,hepatocyte growth factor,periodontal regeneration

                Comments

                Comment on this article