56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of arterial intimal hyperplasia: review and hypothesis

      research-article
      1 ,
      Theoretical Biology & Medical Modelling
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology?

          Hypothesis

          I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it "benign intimal hyperplasia". However, normal or "benign" intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates early in life to form a multi-layer intimal hyperplasia and then continues to self-renew in a controlled manner throughout life, relatively rarely compromising the blood supply to the heart, causing complications requiring intervention only in a small fraction of the population, while all humans are carriers of benign hyperplasia. Unfortunately, this fundamental fact has not been widely appreciated in arteriosclerosis research and medical education, which continue to operate on the assumption that the normal arterial intima is always an "ideal" single-layer endothelium. As a result, the disease is perceived and studied as a new pathological event caused by new mechanisms. The discovery that normal coronary arteries are morphologically indistinguishable from deadly coronary arteriosclerosis continues to elicit surprise.

          Conclusion

          Two questions should inform the priorities of our research: (1) what controls switch the single cell-layer intimal phenotype into normal hyperplasia? (2) how is normal (benign) hyperplasia maintained? We would be hard-pressed to gain practical insights without scrutinizing our premises.

          Related collections

          Most cited references286

          • Record: found
          • Abstract: not found
          • Article: not found

          Nothing in Biology Makes Sense except in the Light of Evolution

            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            The structure of scientific revolution

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.

              This report is the continuation of two earlier reports that defined human arterial intima and precursors of advanced atherosclerotic lesions in humans. This report describes the characteristic components and pathogenic mechanisms of the various advanced atherosclerotic lesions. These, with the earlier definitions of precursor lesions, led to the histological classification of human atherosclerotic lesions found in the second part of this report. The Committee on Vascular Lesions also attempted to correlate the appearance of lesions noted in clinical imaging studies with histological lesion types and corresponding clinical syndromes. In the histological classification, lesions are designated by Roman numerals, which indicate the usual sequence of lesion progression. The initial (type 1) lesion contains enough atherogenic lipoprotein to elicit an increase in macrophages and formation of scattered macrophage foam cells. As in subsequent lesion types, the changes are more marked in locations of arteries with adaptive intimal thickening. (Adaptive thickenings, which are present at constant locations in everyone from birth, do not obstruct the lumen and represent adaptations to local mechanical forces). Type II lesions consist primarily of layers of macrophage foam cells and lipid-laden smooth muscle cells and include lesions grossly designated as fatty streaks. Type III is the intermediate stage between type II and type IV (atheroma, a lesion that is potentially symptom-producing). In addition to the lipid-laden cells of type II, type III lesions contain scattered collections of extracellular lipid droplets and particles that disrupt the coherence of some intimal smooth muscle cells. This extracellular lipid is the immediate precursor of the larger, confluent, and more disruptive core of extracellular lipid that characterizes type IV lesions. Beginning around the fourth decade of life, lesions that usually have a lipid core may also contain thick layers of fibrous connective tissue (type V lesion) and/or fissure, hematoma, and thrombus (type VI lesion). Some type V lesions are largely calcified (type Vb), and some consist mainly of fibrous connective tissue and little or no accumulated lipid or calcium (type Vc).
                Bookmark

                Author and article information

                Journal
                Theor Biol Med Model
                Theoretical Biology & Medical Modelling
                BioMed Central
                1742-4682
                2007
                31 October 2007
                : 4
                : 41
                Affiliations
                [1 ]Mirus Bio Corporation, 505 S Rosa Rd, Madison, Wisconsin, 53719, USA
                Article
                1742-4682-4-41
                10.1186/1742-4682-4-41
                2169223
                17974015
                3ed759a8-9a9e-4b02-8a3d-1606aa353271
                Copyright © 2007 Subbotin; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 September 2007
                : 31 October 2007
                Categories
                Research

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article