9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      African climate response to orbital and glacial forcing in 140,000-y simulation with implications for early modern human environments

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A climate/vegetation model simulates episodic wetter and drier periods at the 21,000-y precession period in eastern North Africa, the Arabian Peninsula, and the Levant over the past 140,000 y. Large orbitally forced wet/dry extremes occur during interglacial time, ∼130 to 80 ka, and conditions between these two extremes prevail during glacial time, ∼70 to 15 ka. Orbital precession causes high seasonality in Northern Hemisphere (NH) insolation at ∼125, 105, and 83 ka, with stronger and northward extended summer monsoon rains in North Africa and the Arabian Peninsula and increased winter rains in the Mediterranean Basin. The combined effects of these two seasonally distinct rainfall regimes increase vegetation and narrow the width of the Saharan–Arabian desert and semidesert zones. During the opposite phase of the precession cycle (∼115, 95, and 73 ka), NH seasonality is low, and decreased summer insolation and increased winter insolation cause monsoon and storm track rains to decrease and the width of the desert zone to increase. During glacial time (∼70 to 15 ka), forcing from large ice sheets and lowered greenhouse gas concentrations combine to increase winter Mediterranean storm track precipitation; the southward retreat of the northern limit of summer monsoon rains is relatively small, thereby limiting the expansion of deserts. The lowered greenhouse gas concentrations cause the near-equatorial zone to cool and reduce convection, causing drier climate with reduced forest cover. At most locations and times, the simulations agree with environmental observations. These changing regional patterns of climate/vegetation could have influenced the dispersal of early humans through expansions and contractions of well-watered corridors.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Community Climate System Model Version 3 (CCSM3)

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monsoon Climate of the Early Holocene: Climate Experiment with the Earth's Orbital Parameters for 9000 Years Ago.

              Values for the precession and obliquity of the earth 9000 years ago indicate that the global average solar radiation for July 9000 years ago was 7 percent greater than at present. When the estimated solar radiation values are used in a low-resulation climate model, the model simulates an intensified continent-scale monsoon circulation. This result agrees with paleoclimatic evidence from Africa, Arabia, and India that monsoon rains were stronger between 10,000 and 5000 years ago than they are today.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 04 2020
                February 04 2020
                February 04 2020
                January 21 2020
                : 117
                : 5
                : 2255-2264
                Article
                10.1073/pnas.1917673117
                7007574
                31964850
                3f7c12a5-553b-4570-afe2-67768926179a
                © 2020

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article