11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GATA3 Expression Is Decreased in Psoriasis and during Epidermal Regeneration; Induction by Narrow-Band UVB and IL-4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Psoriasis is characterized by hyperproliferation of keratinocytes and by infiltration of activated Th1 and Th17 cells in the (epi)dermis. By expression microarray, we previously found the GATA3 transcription factor significantly downregulated in lesional psoriatic skin. Since GATA3 serves as a key switch in both epidermal and T helper cell differentiation, we investigated its function in psoriasis. Because psoriatic skin inflammation shares many characteristics of epidermal regeneration during wound healing, we also studied GATA3 expression under such conditions.

          Psoriatic lesional skin showed decreased GATA3 mRNA and protein expression compared to non-lesional skin. GATA3 expression was also markedly decreased in inflamed skin of mice with a psoriasiform dermatitis induced with imiquimod. Tape-stripping of non-lesional skin of patients with psoriasis, a standardized psoriasis-triggering and skin regeneration-inducing technique, reduced the expression of GATA3. In wounded skin of mice, low GATA3 mRNA and protein expression was detected. Taken together, GATA3 expression is downregulated under regenerative and inflammatory hyperproliferative skin conditions. GATA3 expression could be re-induced by successful narrow-band UVB treatment of both human psoriasis and imiquimod-induced psoriasiform dermatitis in mice. The prototypic Th2 cytokine IL-4 was the only cytokine capable of inducing GATA3 in skin explants from healthy donors. Based on these findings we argue that GATA3 serves as a key regulator in psoriatic inflammation, keratinocyte hyperproliferation and skin barrier dysfunction.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          DAVID: Database for Annotation, Visualization, and Integrated Discovery.

          Functional annotation of differentially expressed genes is a necessary and critical step in the analysis of microarray data. The distributed nature of biological knowledge frequently requires researchers to navigate through numerous web-accessible databases gathering information one gene at a time. A more judicious approach is to provide query-based access to an integrated database that disseminates biologically rich information across large datasets and displays graphic summaries of functional information. Database for Annotation, Visualization, and Integrated Discovery (DAVID; http://www.david.niaid.nih.gov) addresses this need via four web-based analysis modules: 1) Annotation Tool - rapidly appends descriptive data from several public databases to lists of genes; 2) GoCharts - assigns genes to Gene Ontology functional categories based on user selected classifications and term specificity level; 3) KeggCharts - assigns genes to KEGG metabolic processes and enables users to view genes in the context of biochemical pathway maps; and 4) DomainCharts - groups genes according to PFAM conserved protein domains. Analysis results and graphical displays remain dynamically linked to primary data and external data repositories, thereby furnishing in-depth as well as broad-based data coverage. The functionality provided by DAVID accelerates the analysis of genome-scale datasets by facilitating the transition from data collection to biological meaning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasmacytoid predendritic cells initiate psoriasis through interferon-α production

            Psoriasis is one of the most common T cell–mediated autoimmune diseases in humans. Although a role for the innate immune system in driving the autoimmune T cell cascade has been proposed, its nature remains elusive. We show that plasmacytoid predendritic cells (PDCs), the natural interferon (IFN)-α–producing cells, infiltrate the skin of psoriatic patients and become activated to produce IFN-α early during disease formation. In a xenograft model of human psoriasis, we demonstrate that blocking IFN-α signaling or inhibiting the ability of PDCs to produce IFN-α prevented the T cell–dependent development of psoriasis. Furthermore, IFN-α reconstitution experiments demonstrated that PDC-derived IFN-α is essential to drive the development of psoriasis in vivo. These findings uncover a novel innate immune pathway for triggering a common human autoimmune disease and suggest that PDCs and PDC-derived IFN-α represent potential early targets for the treatment of psoriasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism.

              Recently, the transcription factor GATA-3 was shown to be selectively expressed in Th2 but not Th1 cells and to augment Th2-specific cytokines. Here, we show that loss of GATA-3 expression by developing Th1 cells requires IL-12 signaling through Stat4 and does not simply result from an absence of IL-4. Moreover, we demonstrate a novel role for GATA-3 in directly repressing Th1 development distinct from its positive actions on Th2-specific cytokines. GATA-3 inhibits Th1 cytokines by a cell-intrinsic mechanism that is not dependent on IL-4 and that may involve repression of IL-12 signaling. Thus, GATA-3 expression and IL-12 signaling are mutually antagonistic, which facilitates rapid dominance of one pathway during early Th development, producing a stable divergence in cytokine profiles.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                17 May 2011
                : 6
                : 5
                : e19806
                Affiliations
                [1 ]Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
                [2 ]Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
                [3 ]Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
                [4 ]Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
                Institut Jacques Monod, France
                Author notes

                Conceived and designed the experiments: ER DK EB JL LvdF EP. Performed the experiments: ER DK MK EB EF SM. Analyzed the data: ER DK DdR. Contributed reagents/materials/analysis tools: JL EP. Wrote the paper: ER DK JL LvdF EP.

                Article
                PONE-D-11-00497
                10.1371/journal.pone.0019806
                3096641
                21611195
                3fce6fa8-a374-4490-9f2a-15ffe3376b61
                Racz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 December 2010
                : 6 April 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Medicine
                Clinical Immunology
                Autoimmune Diseases
                Immune Response
                Immunomodulation
                Dermatology
                Inflammatory Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article