5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Histological Assessment of the Cell Death Induced by Haloperidol on Prefrontal Cortex Translated title: Una Evaluación Histológica de la Muerte Celular Inducida por Haloperidol en la Corteza Prefrontal

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuroleptic drugs such as haloperidol has side effects on extrapyramidal pathways. Tardive Dyskinesia is the most important complication. The most characteristic feature of this Tardive Dyskinesia is involuntary movements of mouth and face. In regard to this problem, the induction of gliosis and cell death in the nervous tissue are considered. In this study, adult Sprague-Dawley rats were used as experimental models. Rats were divided into control and experimental groups. The rats were kept in the animal house under standard conditions during experiments. The control rats were intraperitoneally treated with normal saline for 6 days. The experimental samples were treated for the same time with 2, 5 and 10 mg haloperidol. After the trial period, the rats were killed following general anesthesia and their brains were removed after perfusion with a 4% formalin solution. Then, 1 mm cuts of the brains were obtained. After that, 5 µm tissue sections were prepared and stained with hematoxylin and eosin. The stained sections were examined by optical microscopy. The results showed that the short-term use of haloperidol does not lead to gliosis process in the rat cerebral cortex. The short-term use of 10 mg haloperidol results in cell death in the rat cerebral cortex. Cell death was not observed in the control group and the groups that had received 2 mg and 5 mg doses of haloperidol. According to previous studies, it can be concluded that the gliosis process is induced in the cerebral cortex only following the long-term use of haloperidol. It is considered as a secondary cause of the neuroleptic drugs side effects. The primary cause of these side effects is the induction of cell death in neurons.

          Translated abstract

          Los fármacos neurolépticos como el haloperidol tiene efectos secundarios sobre las vías extrapiramidales. La discinesia tardía es la complicación más importante. El rasgo más característico de esta discinesia tardía son movimientos involuntarios de la boca y cara. En lo que respecta a este problema, se consideran la inducción de gliosis y muerte celular en el tejido nervioso. En este estudio, fueron utilizados ratas Sprague - Dawley adultas como modelos experimentales. Las ratas se dividieron en grupos control y experimentales, y se mantuvieron en condiciones estándar durante los experimentos. Las ratas control fueron tratadas por vía intraperitoneal con solución salina normal durante 6 días, y las experimentales durante el mismo tiempo con 2 , 5 y 10 mg de haloperidol. Luego, las ratas se sacrificaron y sus cerebros se extrajeron después de la perfusión con una solución de formalina al 4%, obteniendo cortes de 1 mm de los cerebros. Se prepararon y se tiñeron con hematoxilina y eosina en secciones de tejido de 5 micras, y se examinaron por microscopía óptica. Se observó que el uso a corto plazo del haloperidol no conduce a proceso de gliosis en la corteza cerebral de rata. El uso a corto plazo de 10 mg de haloperidol produjo muerte celular en la corteza cerebral de rata. La muerte celular no se observó en el grupo control ni en los grupos que habían recibido 2 y 5 mg de haloperidol. De acuerdo con estudios anteriores, se concluye que el proceso de gliosis se induce en la corteza cerebral sólo tras el uso a largo plazo de exposición al haloperidol. Se considera como una causa secundaria de los efectos adversos de los fármacos neurolépticos. La principal causa de estos efectos secundarios, es la inducción de muerte celular en neuronas.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Haloperidol-induced cell death--mechanism and protection with vitamin E in vitro.

          Haloperidol, a dopamine receptor antagonist and sigma-receptor-active neuroleptic drug, is cytotoxic to primary hippocampal neurones, C6 glioma cells and NCB20 cells. A 24 h challenge of these cells with haloperidol resulted in reduced cell viability and ultimately cell lysis. The most dramatic changes in cellular morphology were the retraction of cellular extensions, development of membrane blebs, and finally cell detachment from the culture dish. DNA isolated from haloperidol-treated cells was randomly degraded, indicating a necrotic rather than an apoptotic pathway of cell death. Vitamin E (alpha-tocopherol), a lipophilic free radical scavenger, prevented haloperidol-induced DNA fragmentation and ultimately cell death. These findings suggest that haloperidol induces necrotic cell death in which free radicals play a major role.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prenatal exposure of testosterone prevents SDN-POA neurons of postnatal male rats from apoptosis through NMDA receptor.

            The role of N-methyl-D-aspartate (NMDA) receptor in mediating the effect of testosterone exposure prenatally on neuronal apoptosis in the sexual dimorphic nucleus of the preoptic area (SDN-POA) of rats was studied. The endogenous testosterone was diminished by prenatal stress (PNS) or simulated by testosterone exposure (TE) to understand the effect of testosterone on NR(1) (a functional subunit protein of NMDA receptor) expression and neuronal apoptosis. To further study whether the testosterone, after being converted into estradiol, modulates NR(1) expression, 4-androstein-4-ol-3,17-dione (ATD; an aromatase inhibitor) was used to block the conversion of estradiol from testosterone. The expressions of the NR(1) mRNA and NR(1) subunit protein were quantified by RT-PCR and western blotting analysis, respectively. In addition, a noncompetitive antagonist of NMDA receptor, MK-801, was used to find out whether blockage of NMDA receptor affects the naturally occurring apoptosis in SDN-POA. The results showed the following. 1) Expression of perinatal NR(1) subunit protein in the central part of the medial preoptic area of male rats was significantly higher than that of females, especially on postnatal days 1 and 3. 2) The testosterone level of male fetuses on embryonic day 18 was significantly higher than that of females, while the testosterone level of TE females or PNS males was similar to that of intact males or intact females, respectively. 3) The apoptotic incidence of intact male rats was significantly less than that of females, and the apoptosis was stimulated by PNS in male or inhibited by TE in female. 4) The expression of NR(1) subunit protein could be inhibited by PNS or ATD-treatment in male, while stimulated by TE in female. 5) NR(1) mRNA showed no significant difference among intact male, PNS male, ATD-treated male, TE female and intact female rats. 6) The low apoptotic incidence of male rats was significantly increased when NMDA receptor was blocked by MK-801. These results suggest that testosterone, after being converted to estradiol, may prevent the SDN-POA neurons of male rats from apoptosis through enhancing the expression of NR(1) at the posttranscriptional level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Haloperidol-induced neuronal apoptosis: role of p38 and c-Jun-NH(2)-terminal protein kinase.

              We examined patterns and mechanisms of cell death induced by haloperidol. Cortical cell cultures exposed to 10-100 microM: haloperidol for 24 h underwent neuronal death without injuring glia. The degenerating neurons showed hallmarks of apoptosis, featuring cell body shrinkage, nuclear chromatin condensation and aggregation, nuclear membrane disintegration with intact plasma membrane, and prominent internucleosomal DNA fragmentation. Neither glutamate antagonists nor antioxidants prevented the haloperidol-induced neuronal apoptosis. The c-Jun-NH(2)-terminal protein kinase and p38 mitogen-activated protein kinase were activated within 1 h and were sustained over the next 3 h following exposure of cortical neurons to 30 microM haloperidol. Haloperidol-induced neuronal apoptosis was partially attenuated by 10-30 microM PD169316, a selective inhibitor of p38 mitogen-activated protein kinase. Inclusion of 1 microg/ml cycloheximide, a protein synthesis inhibitor, or 100 ng/ml insulin prevented activation of both kinases and subsequent neuronal death. The present study demonstrates that cortical neurons exposed to haloperidol undergo apoptosis depending on activation of p38 mitogen-activated protein kinase and c-Jun-NH(2)-terminal protein kinase sensitive to cycloheximide and insulin.
                Bookmark

                Author and article information

                Journal
                ijmorphol
                International Journal of Morphology
                Int. J. Morphol.
                Sociedad Chilena de Anatomía (Temuco, , Chile )
                0717-9502
                December 2013
                : 31
                : 4
                : 1439-1443
                Affiliations
                [02] Kermanshah orgnameKermanshah University of Medical Sciences orgdiv1Student Research Committee Iran
                [01] Kermanshah orgnameKermanshah University of Medical Sciences orgdiv1Fertility and Infertility Research Center Iran
                Article
                S0717-95022013000400046 S0717-9502(13)03100400046
                10.4067/S0717-95022013000400046
                4129b170-bc82-4aa4-9e74-b4e42861170d

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 20 October 2013
                : 20 June 2013
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 16, Pages: 5
                Product

                SciELO Chile


                Cerebral cortex,Optical microscopy,Cell death,Rat,Haloperidol,Corteza cerebral,Microscopía óptica,Muerte celular,Rata

                Comments

                Comment on this article