12
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most predominant and fatal pathogens at wound infection sites. MRSA is difficult to treat because of its antibiotic resistance and ability to form biofilms at the wound site.

          Methods

          In this study, a novel nanoscale liquid film-forming system (LFFS) loaded with benzalkonium bromide was produced based on polyvinyl alcohol and chitosan.

          Results

          This LFFS showed a faster and more potent effect against MRSA252 than benzalkonium bromide aqueous solution both in vitro and in vivo. Additionally, the LFFS had a stronger ability to destroy biofilms (5 mg/mL) and inhibit their formation (1.33 μg/mL). The LFFS inflicted obvious damage to the structure and integrity of MRSA cell membranes and caused increases in the release of alkaline phosphate and lactate dehydrogenase in the relative electrical conductivity and in K + and Mg 2+ concentrations due to changes in the MRSA cell membrane permeability.

          Conclusion

          The novel LFFS is promising as an effective system for disinfectant delivery and for application in the treatment of MRSA wound infections.

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Influence of pH on wound-healing: a new perspective for wound-therapy?

          Wound healing is a complex regeneration process, which is characterised by intercalating degradation and re-assembly of connective tissue and epidermal layer. The pH value within the wound-milieu influences indirectly and directly all biochemical reactions taking place in this process of healing. Interestingly it is so far a neglected parameter for the overall outcome. For more than three decades the common assumption amongst physicians was that a low pH value, such as it is found on normal skin, is favourable for wound healing. However, investigations have shown that in fact some healing processes such as the take-rate of skin-grafts require an alkaline milieu. The matter is thus much more complicated than it was assumed. This review article summarises the existing literature dealing with the topic of pH value within the wound-milieu, its influence on wound healing and critically discusses the currently existing data in this field. The conclusion to be drawn at present is that the wound pH indeed proves to be a potent influential factor for the healing process and that different pH ranges are required for certain distinct phases of wound healing. Further systematic data needs to be collected for a better understanding of the pH requirements under specific circumstances. This is important as it will help to develop new pH targeted therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Traditional Therapies for Skin Wound Healing.

            Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used with promising results. Although these products are in general less expensive than the modern treatments, they can be sensitive to the geographic location and season, and exhibit batch-to-batch variation, which can lead to unexpected allergic reactions, side effects, and contradictory clinical results. Future Directions: The scientific evidence for the use of traditional therapies in wound healing indicates beneficial effects in the treatment of different lesions. However, specific challenges remain unsolved. To extend the efficacy and the usage of natural substances in wound care, multidisciplinary efforts are necessary to prove the safety of these products, investigate their side effects, and develop standard controlled trials. The development of good manufacturing practices and regulatory legislation also assume a pivotal role in order to improve the use of traditional therapies by the clinicians and to promote their integration into the national health system. Current trends move to the development of innovative wound care treatments, combining the use of traditional healing agents and modern products/practices, such as nanofibers containing silver nanoparticles, Aloe vera loaded into alginate hydrogels, propolis into dressing films, and hydrogel sheets containing honey.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

              Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2018
                03 September 2018
                : 13
                : 4987-5002
                Affiliations
                National Engineering Research Center of Immunological Products & Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, 400038, People’s Republic of China, qmzou2007@ 123456163.com ; sunhongwu2001@ 123456163.com
                Author notes
                Correspondence: Quanming Zou; Hongwu Sun, National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, 30 Sha Ping Ba Gaotanyan Street, Chongqing, 400038, People’s Republic of China, Tel/fax +86 23 6875 2377, Email qmzou2007@ 123456163.com ; sunhongwu2001@ 123456163.com
                [*]

                These authors contributed equally to this work

                Article
                ijn-13-4987
                10.2147/IJN.S161680
                6128272
                41347758-54c4-4d0f-bdb4-7bfc0c99a7ef
                © 2018 Yang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                liquid film-forming system,methicillin-resistant staphylococcus aureus,wound healing,antibiofilm,antibacterial

                Comments

                Comment on this article